論文の概要: Explainable AI Components for Narrative Map Extraction
- arxiv url: http://arxiv.org/abs/2503.16554v1
- Date: Wed, 19 Mar 2025 17:48:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:56:11.604397
- Title: Explainable AI Components for Narrative Map Extraction
- Title(参考訳): ナラティブマップ抽出のための説明可能なAIコンポーネント
- Authors: Brian Keith, Fausto German, Eric Krokos, Sarah Joseph, Chris North,
- Abstract要約: 本稿では,ナラティブマップ抽出のための説明可能な人工知能(XAI)システムの評価を行う。
本システムでは,低レベルの文書関係のための話題クラスタに基づく説明,イベント関係のための接続説明,全体の物語パターンに関する高レベルの構造説明を統合した。
- 参考スコア(独自算出の注目度): 1.5299269190396476
- License:
- Abstract: As narrative extraction systems grow in complexity, establishing user trust through interpretable and explainable outputs becomes increasingly critical. This paper presents an evaluation of an Explainable Artificial Intelligence (XAI) system for narrative map extraction that provides meaningful explanations across multiple levels of abstraction. Our system integrates explanations based on topical clusters for low-level document relationships, connection explanations for event relationships, and high-level structure explanations for overall narrative patterns. In particular, we evaluate the XAI system through a user study involving 10 participants that examined narratives from the 2021 Cuban protests. The analysis of results demonstrates that participants using the explanations made the users trust in the system's decisions, with connection explanations and important event detection proving particularly effective at building user confidence. Survey responses indicate that the multi-level explanation approach helped users develop appropriate trust in the system's narrative extraction capabilities. This work advances the state-of-the-art in explainable narrative extraction while providing practical insights for developing reliable narrative extraction systems that support effective human-AI collaboration.
- Abstract(参考訳): 物語抽出システムが複雑化するにつれて、解釈可能かつ説明可能なアウトプットによるユーザ信頼の確立がますます重要になる。
本稿では,複数の抽象化レベルにまたがる有意義な説明を提供するナラティブマップ抽出のための,説明可能な人工知能(XAI)システムの評価を行う。
本システムでは,低レベルの文書関係のための話題クラスタに基づく説明,イベント関係のための接続説明,全体の物語パターンに関する高レベルの構造説明を統合した。
特に,2021年のキューバの抗議運動の物語を10人の参加者によるユーザスタディを通じて,XAIシステムの評価を行った。
この結果から, 利用者がシステム決定を信頼する上で, 接続説明と重要な事象検出を併用して, 利用者の信頼感を高めることが示唆された。
調査回答は,マルチレベルな説明手法が,ユーザのナラティブ抽出能力を適切に信頼する上で有効であることを示唆している。
この研究は、人間とAIの効果的なコラボレーションを支援する信頼性の高い物語抽出システムを開発するための実践的な洞察を提供しながら、説明可能な物語抽出の最先端を推し進める。
関連論文リスト
- An Ontology-Enabled Approach For User-Centered and Knowledge-Enabled Explanations of AI Systems [0.3480973072524161]
説明可能性に関する最近の研究は、AIモデルやモデル説明可能性の動作を説明することに重点を置いている。
この論文は、モデルとユーザ中心の説明可能性の間のギャップを埋めようとしている。
論文 参考訳(メタデータ) (2024-10-23T02:03:49Z) - Tell me more: Intent Fulfilment Framework for Enhancing User Experiences in Conversational XAI [0.6333053895057925]
本稿では,ユーザのXAIニーズに対して,異なるタイプの説明が協調的にどのように適合するかを考察する。
Intent Fulfilment Framework (IFF)を導入した。
Explanation Experience Dialogue Model は IFF と "Explanation Followups" を統合し,対話型インターフェースを提供する。
論文 参考訳(メタデータ) (2024-05-16T21:13:43Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Behaviour Trees for Conversational Explanation Experiences [1.5257668132713955]
本稿では、ユーザがXAIシステムと対話して、説明戦略によって満たされた複数の説明要求を満たす方法に焦点を当てる。
対話型説明体験を対話モデルとしてモデル化する。
実世界のユースケースを用いた評価では、BTには、モデリングや説明経験の取得に自然に寄与する多くの特性がある。
論文 参考訳(メタデータ) (2022-11-11T18:39:38Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Exploring Effectiveness of Explanations for Appropriate Trust: Lessons
from Cognitive Psychology [3.1945067016153423]
この研究は、認知心理学における発見からインスピレーションを得て、いかに効果的な説明を設計できるかを理解する。
我々は、デザイナーが特別な注意を払うことができる4つのコンポーネント、知覚、意味論、意図、ユーザとコンテキストを識別する。
本稿では,解釈可能な説明を生成できないアルゴリズムと説明コミュニケーションを併用した説明生成の新たなステップとして,効果的なAI説明のための重要な課題を提案する。
論文 参考訳(メタデータ) (2022-10-05T13:40:01Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
本稿では,知識グラフ拡張ネットワーク(KGAN)を提案する。
KGANは感情の特徴表現を、文脈、構文、知識に基づく複数の視点から捉えている。
3つの人気のあるABSAベンチマークの実験は、我々のKGANの有効性と堅牢性を示している。
論文 参考訳(メタデータ) (2022-01-13T08:25:53Z) - Explainable Artificial Intelligence (XAI) for Increasing User Trust in
Deep Reinforcement Learning Driven Autonomous Systems [0.8701566919381223]
我々は3つの説明を提供する説明可能な人工知能(XAI)フレームワークを提供する。
我々は,XAIフレームワークのユーザインタフェースを作成し,その有効性を評価した。
論文 参考訳(メタデータ) (2021-06-07T16:38:43Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
反実用説明システムは、入力画像を変更して反実用推論を可能にする。
本稿では, 対向画像から画像への変換技術に基づく, 対向画像の説明を新たに生成する手法を提案する。
その結果,我々のアプローチは,2つの最先端技術システムよりも,メンタルモデル,説明満足度,信頼度,感情,自己効力に関して有意に優れた結果をもたらすことがわかった。
論文 参考訳(メタデータ) (2020-12-22T10:08:05Z) - Exploring Explainable Selection to Control Abstractive Summarization [51.74889133688111]
説明可能性を重視した新しいフレームワークを開発する。
新しいペアワイズ行列は、文の相互作用、中心性、属性スコアをキャプチャする。
コンストラクタ内の文分割アテンション機構は、最終要約が所望のコンテンツを強調することを保証する。
論文 参考訳(メタデータ) (2020-04-24T14:39:34Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。