Advancing Problem-Based Learning in Biomedical Engineering in the Era of Generative AI
- URL: http://arxiv.org/abs/2503.16558v1
- Date: Thu, 20 Mar 2025 00:52:02 GMT
- Title: Advancing Problem-Based Learning in Biomedical Engineering in the Era of Generative AI
- Authors: Micky C. Nnamdi, J. Ben Tamo, Wenqi Shi, May D. Wang,
- Abstract summary: Problem-Based Learning (PBL) has significantly impacted biomedical engineering (BME) education since its introduction in the early 2000s.<n>Recent advancements, including AI's recognition by the 2024 Nobel Prize, have highlighted the importance of training students comprehensively in biomedical AI.<n>We conducted a three-year case study to implement an advanced framework tailored specifically for biomedical AI education.
- Score: 4.1150261845357194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Problem-Based Learning (PBL) has significantly impacted biomedical engineering (BME) education since its introduction in the early 2000s, effectively enhancing critical thinking and real-world knowledge application among students. With biomedical engineering rapidly converging with artificial intelligence (AI), integrating effective AI education into established curricula has become challenging yet increasingly necessary. Recent advancements, including AI's recognition by the 2024 Nobel Prize, have highlighted the importance of training students comprehensively in biomedical AI. However, effective biomedical AI education faces substantial obstacles, such as diverse student backgrounds, limited personalized mentoring, constrained computational resources, and difficulties in safely scaling hands-on practical experiments due to privacy and ethical concerns associated with biomedical data. To overcome these issues, we conducted a three-year (2021-2023) case study implementing an advanced PBL framework tailored specifically for biomedical AI education, involving 92 undergraduate and 156 graduate students from the joint Biomedical Engineering program of Georgia Institute of Technology and Emory University. Our approach emphasizes collaborative, interdisciplinary problem-solving through authentic biomedical AI challenges. The implementation led to measurable improvements in learning outcomes, evidenced by high research productivity (16 student-authored publications), consistently positive peer evaluations, and successful development of innovative computational methods addressing real biomedical challenges. Additionally, we examined the role of generative AI both as a teaching subject and an educational support tool within the PBL framework. Our study presents a practical and scalable roadmap for biomedical engineering departments aiming to integrate robust AI education into their curricula.
Related papers
- Biomedical Foundation Model: A Survey [84.26268124754792]
Foundation models are large-scale pre-trained models that learn from extensive unlabeled datasets.
These models can be adapted to various applications such as question answering and visual understanding.
This survey explores the potential of foundation models across diverse domains within biomedical fields.
arXiv Detail & Related papers (2025-03-03T22:42:00Z) - Generative Artificial Intelligence: Implications for Biomedical and Health Professions Education [0.0]
Generative AI has had a profound impact on biomedicine and health, both in professional work and in education.<n>Based on large language models (LLMs), generative AI has been found to perform as well as humans in simulated situations taking medical board exams.<n>Generative AI is also being used widely in education, performing well in academic courses and their assessments.
arXiv Detail & Related papers (2025-01-17T13:32:19Z) - From Screens to Scenes: A Survey of Embodied AI in Healthcare [31.183244202702983]
"EmAI in healthcare" spans diverse fields such as algorithms, robotics, and biomedicine.<n>We provide a comprehensive overview of the "brain" of EmAI for healthcare, wherein we introduce AI algorithms for perception, actuation, planning, and memory.<n>We discuss the technical barriers and explore ethical considerations, offering a forward-looking perspective on the future of EmAI in healthcare.
arXiv Detail & Related papers (2025-01-13T16:35:52Z) - Promoting AI Competencies for Medical Students: A Scoping Review on Frameworks, Programs, and Tools [1.8402287369342527]
Despite the evolving importance of AI in healthcare, the extent to which it has been adopted into traditional and often-overloaded medical curricula is unknown.
This review provides a road map for developing practical and relevant education strategies for building an AI-competent healthcare workforce.
arXiv Detail & Related papers (2024-07-10T16:34:41Z) - Empowering Biomedical Discovery with AI Agents [15.125735219811268]
We envision "AI scientists" as systems capable of skeptical learning and reasoning.
Biomedical AI agents combine human creativity and expertise with AI's ability to analyze large datasets.
AI agents can impact areas ranging from virtual cell simulation, programmable control of phenotypes, and the design of cellular circuits to developing new therapies.
arXiv Detail & Related papers (2024-04-03T16:08:01Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - Proactive and Reactive Engagement of Artificial Intelligence Methods for
Education: A Review [2.2843885788439793]
We investigate how artificial intelligence, machine learning and deep learning methods are being utilized to support students, educators and administrative staff.
We consider the involvement of AI-driven methods in the education process in its entirety.
arXiv Detail & Related papers (2023-01-23T02:47:36Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
We introduce COVID-Net Biochem, a versatile and explainable framework for constructing machine learning models.
We apply this framework to predict COVID-19 patient survival and the likelihood of developing Acute Kidney Injury during hospitalization.
arXiv Detail & Related papers (2022-04-24T07:38:37Z) - Machine Learning Applications for Therapeutic Tasks with Genomics Data [49.98249191161107]
We review the literature on machine learning applications for genomics through the lens of therapeutic development.
We identify twenty-two machine learning in genomics applications across the entire therapeutics pipeline.
We pinpoint seven important challenges in this field with opportunities for expansion and impact.
arXiv Detail & Related papers (2021-05-03T21:20:20Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization.
We present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence to tackle many aspects of the COVID-19 crisis.
arXiv Detail & Related papers (2020-03-25T12:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.