UniK3D: Universal Camera Monocular 3D Estimation
- URL: http://arxiv.org/abs/2503.16591v1
- Date: Thu, 20 Mar 2025 17:49:23 GMT
- Title: UniK3D: Universal Camera Monocular 3D Estimation
- Authors: Luigi Piccinelli, Christos Sakaridis, Mattia Segu, Yung-Hsu Yang, Siyuan Li, Wim Abbeloos, Luc Van Gool,
- Abstract summary: We present UniK3D, the first generalizable method for monocular 3D estimation able to model any camera.<n>Our method introduces a spherical 3D representation which allows for better disentanglement of camera and scene geometry.<n>A comprehensive zero-shot evaluation on 13 diverse datasets demonstrates the state-of-the-art performance of UniK3D across 3D, depth, and camera metrics.
- Score: 62.06785782635153
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Monocular 3D estimation is crucial for visual perception. However, current methods fall short by relying on oversimplified assumptions, such as pinhole camera models or rectified images. These limitations severely restrict their general applicability, causing poor performance in real-world scenarios with fisheye or panoramic images and resulting in substantial context loss. To address this, we present UniK3D, the first generalizable method for monocular 3D estimation able to model any camera. Our method introduces a spherical 3D representation which allows for better disentanglement of camera and scene geometry and enables accurate metric 3D reconstruction for unconstrained camera models. Our camera component features a novel, model-independent representation of the pencil of rays, achieved through a learned superposition of spherical harmonics. We also introduce an angular loss, which, together with the camera module design, prevents the contraction of the 3D outputs for wide-view cameras. A comprehensive zero-shot evaluation on 13 diverse datasets demonstrates the state-of-the-art performance of UniK3D across 3D, depth, and camera metrics, with substantial gains in challenging large-field-of-view and panoramic settings, while maintaining top accuracy in conventional pinhole small-field-of-view domains. Code and models are available at github.com/lpiccinelli-eth/unik3d .
Related papers
- LiftImage3D: Lifting Any Single Image to 3D Gaussians with Video Generation Priors [107.83398512719981]
Single-image 3D reconstruction remains a fundamental challenge in computer vision.<n>Recent advances in Latent Video Diffusion Models offer promising 3D priors learned from large-scale video data.<n>We propose LiftImage3D, a framework that effectively releases LVDMs' generative priors while ensuring 3D consistency.
arXiv Detail & Related papers (2024-12-12T18:58:42Z) - Boost 3D Reconstruction using Diffusion-based Monocular Camera Calibration [34.18403601269181]
DM-Calib is a diffusion-based approach for estimating pinhole camera intrinsic parameters from a single input image.
We introduce a new image-based representation, termed Camera Image, which losslessly encodes the numerical camera intrinsics.
By fine-tuning a stable diffusion model to generate a Camera Image from a single RGB input, we can extract camera intrinsics via a RANSAC operation.
arXiv Detail & Related papers (2024-11-26T09:04:37Z) - Generating 3D-Consistent Videos from Unposed Internet Photos [68.944029293283]
We train a scalable, 3D-aware video model without any 3D annotations such as camera parameters.
Our results suggest that we can scale up scene-level 3D learning using only 2D data such as videos and multiview internet photos.
arXiv Detail & Related papers (2024-11-20T18:58:31Z) - SYM3D: Learning Symmetric Triplanes for Better 3D-Awareness of GANs [5.84660008137615]
SYM3D is a novel 3D-aware GAN designed to leverage the prevalental symmetry structure found in natural and man-made objects.
We demonstrate its superior performance in capturing detailed geometry and texture, even when trained on only single-view images.
arXiv Detail & Related papers (2024-06-10T16:24:07Z) - DUSt3R: Geometric 3D Vision Made Easy [8.471330244002564]
We introduce DUSt3R, a novel paradigm for Dense and Unconstrained Stereo 3D Reconstruction of arbitrary image collections.<n>We show that this formulation smoothly unifies the monocular and binocular reconstruction cases.<n>Our formulation directly provides a 3D model of the scene as well as depth information, but interestingly, we can seamlessly recover from it, pixel matches, relative and absolute camera.
arXiv Detail & Related papers (2023-12-21T18:52:14Z) - Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image [85.91935485902708]
We show that the key to a zero-shot single-view metric depth model lies in the combination of large-scale data training and resolving the metric ambiguity from various camera models.
We propose a canonical camera space transformation module, which explicitly addresses the ambiguity problems and can be effortlessly plugged into existing monocular models.
Our method enables the accurate recovery of metric 3D structures on randomly collected internet images.
arXiv Detail & Related papers (2023-07-20T16:14:23Z) - Ray3D: ray-based 3D human pose estimation for monocular absolute 3D
localization [3.5379706873065917]
We propose a novel monocular ray-based 3D (Ray3D) absolute human pose estimation with calibrated camera.
Our method significantly outperforms existing state-of-the-art models.
arXiv Detail & Related papers (2022-03-22T05:42:31Z) - MetaPose: Fast 3D Pose from Multiple Views without 3D Supervision [72.5863451123577]
We show how to train a neural model that can perform accurate 3D pose and camera estimation.
Our method outperforms both classical bundle adjustment and weakly-supervised monocular 3D baselines.
arXiv Detail & Related papers (2021-08-10T18:39:56Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.