Boost 3D Reconstruction using Diffusion-based Monocular Camera Calibration
- URL: http://arxiv.org/abs/2411.17240v1
- Date: Tue, 26 Nov 2024 09:04:37 GMT
- Title: Boost 3D Reconstruction using Diffusion-based Monocular Camera Calibration
- Authors: Junyuan Deng, Wei Yin, Xiaoyang Guo, Qian Zhang, Xiaotao Hu, Weiqiang Ren, Xiaoxiao Long, Ping Tan,
- Abstract summary: DM-Calib is a diffusion-based approach for estimating pinhole camera intrinsic parameters from a single input image.
We introduce a new image-based representation, termed Camera Image, which losslessly encodes the numerical camera intrinsics.
By fine-tuning a stable diffusion model to generate a Camera Image from a single RGB input, we can extract camera intrinsics via a RANSAC operation.
- Score: 34.18403601269181
- License:
- Abstract: In this paper, we present DM-Calib, a diffusion-based approach for estimating pinhole camera intrinsic parameters from a single input image. Monocular camera calibration is essential for many 3D vision tasks. However, most existing methods depend on handcrafted assumptions or are constrained by limited training data, resulting in poor generalization across diverse real-world images. Recent advancements in stable diffusion models, trained on massive data, have shown the ability to generate high-quality images with varied characteristics. Emerging evidence indicates that these models implicitly capture the relationship between camera focal length and image content. Building on this insight, we explore how to leverage the powerful priors of diffusion models for monocular pinhole camera calibration. Specifically, we introduce a new image-based representation, termed Camera Image, which losslessly encodes the numerical camera intrinsics and integrates seamlessly with the diffusion framework. Using this representation, we reformulate the problem of estimating camera intrinsics as the generation of a dense Camera Image conditioned on an input image. By fine-tuning a stable diffusion model to generate a Camera Image from a single RGB input, we can extract camera intrinsics via a RANSAC operation. We further demonstrate that our monocular calibration method enhances performance across various 3D tasks, including zero-shot metric depth estimation, 3D metrology, pose estimation and sparse-view reconstruction. Extensive experiments on multiple public datasets show that our approach significantly outperforms baselines and provides broad benefits to 3D vision tasks. Code is available at https://github.com/JunyuanDeng/DM-Calib.
Related papers
- ADen: Adaptive Density Representations for Sparse-view Camera Pose Estimation [17.097170273209333]
Recovering camera poses from a set of images is a foundational task in 3D computer vision.
Recent data-driven approaches aim to directly output camera poses, either through regressing the 6DoF camera poses or formulating rotation as a probability distribution.
We propose ADen to unify the two frameworks by employing a generator and a discriminator.
arXiv Detail & Related papers (2024-08-16T22:45:46Z) - CamFreeDiff: Camera-free Image to Panorama Generation with Diffusion Model [12.38275663977654]
This paper introduces Camera-free Diffusion model for 360-degree image outpainting from a single camera-free image and text description.
Our model incorporates a mechanism for predicting homography directly within the multi-view diffusion framework.
arXiv Detail & Related papers (2024-07-09T18:41:12Z) - DiffCalib: Reformulating Monocular Camera Calibration as Diffusion-Based Dense Incident Map Generation [13.772897737616649]
We leverage the comprehensive visual knowledge embedded in pre-trained diffusion models to enable more robust and accurate monocular camera intrinsic estimation.
Our model achieves state-of-the-art performance, gaining up to a 40% reduction in prediction errors.
arXiv Detail & Related papers (2024-05-24T15:05:04Z) - Era3D: High-Resolution Multiview Diffusion using Efficient Row-wise Attention [87.02613021058484]
We introduce Era3D, a novel multiview diffusion method that generates high-resolution multiview images from a single-view image.
Era3D generates high-quality multiview images with up to a 512*512 resolution while reducing complexity by 12x times.
arXiv Detail & Related papers (2024-05-19T17:13:16Z) - Dual-Camera Smooth Zoom on Mobile Phones [55.4114152554769]
We introduce a new task, ie, dual-camera smooth zoom (DCSZ) to achieve a smooth zoom preview.
The frame models (FI) technique is a potential solution but struggles with ground-truth collection.
We suggest a data factory solution where continuous virtual cameras are assembled to generate DCSZ data by rendering reconstructed 3D models of the scene.
arXiv Detail & Related papers (2024-04-07T10:28:01Z) - Cameras as Rays: Pose Estimation via Ray Diffusion [54.098613859015856]
Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparsely sampled views.
We propose a distributed representation of camera pose that treats a camera as a bundle of rays.
Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D.
arXiv Detail & Related papers (2024-02-22T18:59:56Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
We present Sparse3D, a novel 3D reconstruction method tailored for sparse view inputs.
Our approach distills robust priors from a multiview-consistent diffusion model to refine a neural radiance field.
By tapping into 2D priors from powerful image diffusion models, our integrated model consistently delivers high-quality results.
arXiv Detail & Related papers (2023-08-27T11:52:00Z) - Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image [85.91935485902708]
We show that the key to a zero-shot single-view metric depth model lies in the combination of large-scale data training and resolving the metric ambiguity from various camera models.
We propose a canonical camera space transformation module, which explicitly addresses the ambiguity problems and can be effortlessly plugged into existing monocular models.
Our method enables the accurate recovery of metric 3D structures on randomly collected internet images.
arXiv Detail & Related papers (2023-07-20T16:14:23Z) - MetaPose: Fast 3D Pose from Multiple Views without 3D Supervision [72.5863451123577]
We show how to train a neural model that can perform accurate 3D pose and camera estimation.
Our method outperforms both classical bundle adjustment and weakly-supervised monocular 3D baselines.
arXiv Detail & Related papers (2021-08-10T18:39:56Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.