Progressive Test Time Energy Adaptation for Medical Image Segmentation
- URL: http://arxiv.org/abs/2503.16616v1
- Date: Thu, 20 Mar 2025 18:15:50 GMT
- Title: Progressive Test Time Energy Adaptation for Medical Image Segmentation
- Authors: Xiaoran Zhang, Byung-Woo Hong, Hyoungseob Park, Daniel H. Pak, Anne-Marie Rickmann, Lawrence H. Staib, James S. Duncan, Alex Wong,
- Abstract summary: We propose a model-agnostic, progressive test-time energy adaptation approach for medical image segmentation.<n>Our method leverages a shape energy model trained on source data, which assigns an energy score at the patch level to segmentation maps.<n>By minimizing this energy score at test time, we refine the segmentation model to align with the target distribution.
- Score: 14.675434864887224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a model-agnostic, progressive test-time energy adaptation approach for medical image segmentation. Maintaining model performance across diverse medical datasets is challenging, as distribution shifts arise from inconsistent imaging protocols and patient variations. Unlike domain adaptation methods that require multiple passes through target data - impractical in clinical settings - our approach adapts pretrained models progressively as they process test data. Our method leverages a shape energy model trained on source data, which assigns an energy score at the patch level to segmentation maps: low energy represents in-distribution (accurate) shapes, while high energy signals out-of-distribution (erroneous) predictions. By minimizing this energy score at test time, we refine the segmentation model to align with the target distribution. To validate the effectiveness and adaptability, we evaluated our framework on eight public MRI (bSSFP, T1- and T2-weighted) and X-ray datasets spanning cardiac, spinal cord, and lung segmentation. We consistently outperform baselines both quantitatively and qualitatively.
Related papers
- Day-Night Adaptation: An Innovative Source-free Adaptation Framework for Medical Image Segmentation [51.520294290813865]
We propose a novel adaptation framework called Day-Night Adaptation (DyNA) with insights.<n>During the day, a low-frequency prompt is trained to adapt the frozen model to each test sample.<n>During the night, we reuse test data collected from the day and introduce a global student model to bridge the knowledge between teacher and student models.
arXiv Detail & Related papers (2024-10-17T12:02:29Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Text-guided Foundation Model Adaptation for Long-Tailed Medical Image Classification [4.6651139122498]
In medical contexts, the imbalanced data distribution in long-tailed datasets, due to scarce labels for rare diseases, greatly impairs the diagnostic accuracy of deep learning models.
Recent multimodal text-image supervised foundation models offer new solutions to data scarcity through effective representation learning.
We propose a novel Text-guided Foundation model Adaptation for Long-Tailed medical image classification (TFA-LT)
Our method achieves an accuracy improvement of up to 27.1%, highlighting the substantial potential of foundation model adaptation in this area.
arXiv Detail & Related papers (2024-08-27T04:18:18Z) - Towards Clinician-Preferred Segmentation: Leveraging Human-in-the-Loop for Test Time Adaptation in Medical Image Segmentation [10.65123164779962]
Deep learning-based medical image segmentation models often face performance degradation when deployed across various medical centers.
We propose a novel Human-in-the-loop TTA framework that capitalizes on the largely overlooked potential of clinician-corrected predictions.
Our framework conceives a divergence loss, designed specifically to diminish the prediction divergence instigated by domain disparities.
arXiv Detail & Related papers (2024-05-14T02:02:15Z) - Diffusion Models for Counterfactual Generation and Anomaly Detection in Brain Images [39.94162291765236]
We present a weakly supervised method to generate a healthy version of a diseased image and then use it to obtain a pixel-wise anomaly map.
We employ a diffusion model trained on healthy samples and combine Denoising Diffusion Probabilistic Model (DDPM) and Denoising Implicit Model (DDIM) at each step of the sampling process.
arXiv Detail & Related papers (2023-08-03T21:56:50Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - HeartBEiT: Vision Transformer for Electrocardiogram Data Improves
Diagnostic Performance at Low Sample Sizes [28.88454028731653]
We create the first vision-based transformer model, HeartBEiT, for electrocardiogram waveform analysis.
We show that HeartBEiT has significantly higher performance at lower sample sizes compared to other models.
We also show that HeartBEiT improves explainability of diagnosis by highlighting biologically relevant regions of the EKG vs. standard CNNs.
arXiv Detail & Related papers (2022-12-13T16:39:21Z) - DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
Medical Images [56.72015587067494]
We propose a novel dynamic learning rate adjustment method for test-time adaptation, called DLTTA.
Our method achieves effective and fast test-time adaptation with consistent performance improvement over current state-of-the-art test-time adaptation methods.
arXiv Detail & Related papers (2022-05-27T02:34:32Z) - About Explicit Variance Minimization: Training Neural Networks for
Medical Imaging With Limited Data Annotations [2.3204178451683264]
Variance Aware Training (VAT) method exploits this property by introducing the variance error into the model loss function.
We validate VAT on three medical imaging datasets from diverse domains and various learning objectives.
arXiv Detail & Related papers (2021-05-28T21:34:04Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.