Deep Unfolding with Kernel-based Quantization in MIMO Detection
- URL: http://arxiv.org/abs/2505.12736v1
- Date: Mon, 19 May 2025 05:50:24 GMT
- Title: Deep Unfolding with Kernel-based Quantization in MIMO Detection
- Authors: Zeyi Ren, Jingreng Lei, Yichen Jin, Ermo Hua, Qingfeng Lin, Chen Zhang, Bowen Zhou, Yik-Chung Wu,
- Abstract summary: This paper proposes a novel kernel-based adaptive quantization (KAQ) framework for deep unfolding networks.<n>The accuracy of proposed KAQ framework outperforms traditional methods and successfully reduces the model's inference latency.
- Score: 26.033613526407226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of edge computing places critical demands on energy-efficient model deployment for multiple-input multiple-output (MIMO) detection tasks. Deploying deep unfolding models such as PGD-Nets and ADMM-Nets into resource-constrained edge devices using quantization methods is challenging. Existing quantization methods based on quantization aware training (QAT) suffer from performance degradation due to their reliance on parametric distribution assumption of activations and static quantization step sizes. To address these challenges, this paper proposes a novel kernel-based adaptive quantization (KAQ) framework for deep unfolding networks. By utilizing a joint kernel density estimation (KDE) and maximum mean discrepancy (MMD) approach to align activation distributions between full-precision and quantized models, the need for prior distribution assumptions is eliminated. Additionally, a dynamic step size updating method is introduced to adjust the quantization step size based on the channel conditions of wireless networks. Extensive simulations demonstrate that the accuracy of proposed KAQ framework outperforms traditional methods and successfully reduces the model's inference latency.
Related papers
- MPQ-DMv2: Flexible Residual Mixed Precision Quantization for Low-Bit Diffusion Models with Temporal Distillation [74.34220141721231]
We present MPQ-DMv2, an improved textbfMixed textbfPrecision textbfQuantization framework for extremely low-bit textbfDiffusion textbfModels.
arXiv Detail & Related papers (2025-07-06T08:16:50Z) - FIMA-Q: Post-Training Quantization for Vision Transformers by Fisher Information Matrix Approximation [55.12070409045766]
Post-training quantization (PTQ) has stood out as a cost-effective and promising model compression paradigm in recent years.<n>Current PTQ methods for Vision Transformers (ViTs) still suffer from significant accuracy degradation, especially under low-bit quantization.
arXiv Detail & Related papers (2025-06-13T07:57:38Z) - Precision Neural Network Quantization via Learnable Adaptive Modules [27.323901068182234]
Quantization Aware Training (QAT) is a neural network quantization technique that compresses model size and improves operational efficiency.<n>We propose an effective learnable adaptive neural network quantization method, called Adaptive Step Size Quantization (ASQ)
arXiv Detail & Related papers (2025-04-24T05:46:25Z) - QuartDepth: Post-Training Quantization for Real-Time Depth Estimation on the Edge [55.75103034526652]
We propose QuartDepth which adopts post-training quantization to quantize MDE models with hardware accelerations for ASICs.<n>Our approach involves quantizing both weights and activations to 4-bit precision, reducing the model size and computation cost.<n>We design a flexible and programmable hardware accelerator by supporting kernel fusion and customized instruction programmability.
arXiv Detail & Related papers (2025-03-20T21:03:10Z) - RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [53.571195477043496]
We propose an algorithm named Rotated Straight-Through-Estimator (RoSTE)<n>RoSTE combines quantization-aware supervised fine-tuning (QA-SFT) with an adaptive rotation strategy to reduce activation outliers.<n>Our findings reveal that the prediction error is directly proportional to the quantization error of the converged weights, which can be effectively managed through an optimized rotation configuration.
arXiv Detail & Related papers (2025-02-13T06:44:33Z) - Adaptive quantization with mixed-precision based on low-cost proxy [8.527626602939105]
This paper proposes a novel model quantization method, named the Low-Cost Proxy-Based Adaptive Mixed-Precision Model Quantization (LCPAQ)
The hardware-aware module is designed by considering the hardware limitations, while an adaptive mixed-precision quantization module is developed to evaluate the quantization sensitivity.
Experiments on the ImageNet demonstrate that the proposed LCPAQ achieves comparable or superior quantization accuracy to existing mixed-precision models.
arXiv Detail & Related papers (2024-02-27T17:36:01Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Efficient Quantization Strategies for Latent Diffusion Models [20.942161659019554]
Latent Diffusion Models (LDMs) capture the dynamic evolution of latent variables over time.
Post Training Quantization (PTQ) is a method to compress the operational size of deep learning models.
This study proposes a quantization strategy that efficiently quantize LDMs.
arXiv Detail & Related papers (2023-12-09T01:47:16Z) - Quantization Aware Factorization for Deep Neural Network Compression [20.04951101799232]
decomposition of convolutional and fully-connected layers is an effective way to reduce parameters and FLOP in neural networks.
A conventional post-training quantization approach applied to networks with weights yields a drop in accuracy.
This motivated us to develop an algorithm that finds decomposed approximation directly with quantized factors.
arXiv Detail & Related papers (2023-08-08T21:38:02Z) - CSQ: Growing Mixed-Precision Quantization Scheme with Bi-level
Continuous Sparsification [51.81850995661478]
Mixed-precision quantization has been widely applied on deep neural networks (DNNs)
Previous attempts on bit-level regularization and pruning-based dynamic precision adjustment during training suffer from noisy gradients and unstable convergence.
We propose Continuous Sparsification Quantization (CSQ), a bit-level training method to search for mixed-precision quantization schemes with improved stability.
arXiv Detail & Related papers (2022-12-06T05:44:21Z) - Standard Deviation-Based Quantization for Deep Neural Networks [17.495852096822894]
Quantization of deep neural networks is a promising approach that reduces the inference cost.
We propose a new framework to learn the quantization intervals (discrete values) using the knowledge of the network's weight and activation distributions.
Our scheme simultaneously prunes the network's parameters and allows us to flexibly adjust the pruning ratio during the quantization process.
arXiv Detail & Related papers (2022-02-24T23:33:47Z) - Gradient $\ell_1$ Regularization for Quantization Robustness [70.39776106458858]
We derive a simple regularization scheme that improves robustness against post-training quantization.
By training quantization-ready networks, our approach enables storing a single set of weights that can be quantized on-demand to different bit-widths.
arXiv Detail & Related papers (2020-02-18T12:31:34Z) - Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning [66.18202188565922]
We propose a communication-efficient decentralized machine learning (ML) algorithm, coined QGADMM (QGADMM)<n>We develop a novel quantization method to adaptively adjust modelization levels and their probabilities, while proving the convergence of QGADMM for convex functions.
arXiv Detail & Related papers (2019-10-23T10:47:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.