論文の概要: Natural Language Generation
- arxiv url: http://arxiv.org/abs/2503.16728v2
- Date: Tue, 25 Mar 2025 10:03:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 10:44:00.182129
- Title: Natural Language Generation
- Title(参考訳): 自然言語生成
- Authors: Emiel van Miltenburg, Chenghua Lin,
- Abstract要約: 自然言語生成(英: Natural Language Generation)とは、自然言語を通じて何らかの形態の情報を言語化するシステムの研究を指す用語である。
自然言語処理のサブフィールドとして、NLGは機械翻訳(MT)やダイアログシステムといった他のサブ分野と密接に関連している。
- 参考スコア(独自算出の注目度): 15.95017604285586
- License:
- Abstract: This article provides a brief overview of the field of Natural Language Generation. The term Natural Language Generation (NLG), in its broadest definition, refers to the study of systems that verbalize some form of information through natural language. That information could be stored in a large database or knowledge graph (in data-to-text applications), but NLG researchers may also study summarisation (text-to-text) or image captioning (image-to-text), for example. As a subfield of Natural Language Processing, NLG is closely related to other sub-disciplines such as Machine Translation (MT) and Dialog Systems. Some NLG researchers exclude MT from their definition of the field, since there is no content selection involved where the system has to determine what to say. Conversely, dialog systems do not typically fall under the header of Natural Language Generation since NLG is just one component of dialog systems (the others being Natural Language Understanding and Dialog Management). However, with the rise of Large Language Models (LLMs), different subfields of Natural Language Processing have converged on similar methodologies for the production of natural language and the evaluation of automatically generated text.
- Abstract(参考訳): 本稿では、自然言語生成の分野について概観する。
自然言語生成(英: Natural Language Generation、NLG)とは、自然言語を通じて何らかの形態の情報を言語化するシステムの研究を指す用語である。
この情報は大規模なデータベースや知識グラフ(データ・トゥ・テキスト・アプリケーション)に格納できるが、NLGの研究者は要約(テキスト・トゥ・テキスト)や画像キャプション(画像・トゥ・テキスト)も研究できる。
自然言語処理のサブフィールドとして、NLGは機械翻訳(MT)やダイアログシステムといった他のサブ分野と密接に関連している。
NLG研究者の中には、MTをフィールドの定義から除外する者もいる。
逆に、対話システムは一般的に自然言語生成のヘッダーに該当しない。なぜなら、NLGは単なる対話システム(他は自然言語理解と対話管理)のコンポーネントであるからである。
しかし,Large Language Models (LLMs) の台頭に伴い,自然言語処理の様々なサブフィールドが,自然言語の生成と自動生成テキストの評価に類似した方法論に集約されている。
関連論文リスト
- Wav2Gloss: Generating Interlinear Glossed Text from Speech [78.64412090339044]
音声から4つの言語アノテーションを自動抽出するタスクであるWav2Glossを提案する。
音声からのインターリニア・グロッシド・テキスト・ジェネレーションの今後の研究の基盤となる基盤となるものについて述べる。
論文 参考訳(メタデータ) (2024-03-19T21:45:29Z) - Neural Machine Translation for the Indigenous Languages of the Americas:
An Introduction [102.13536517783837]
アメリカ大陸のほとんどの言語は、もしあるならば、並列データと単言語データしか持たない。
これらの言語におけるNLPコミュニティの関心が高まった結果、最近の進歩、発見、オープンな質問について論じる。
論文 参考訳(メタデータ) (2023-06-11T23:27:47Z) - Is neural language acquisition similar to natural? A chronological
probing study [0.0515648410037406]
本稿では,MultiBERTやT5といったトランスフォーマー英語モデルの時系列探索について述べる。
コーパスの学習過程において,モデルが学習した言語に関する情報を比較した。
その結果,1)訓練の初期段階に言語情報を取得すること,2)両言語モデルが様々な言語レベルから様々な特徴を捉える能力を示した。
論文 参考訳(メタデータ) (2022-07-01T17:24:11Z) - Linking Emergent and Natural Languages via Corpus Transfer [98.98724497178247]
創発言語と自然言語のコーパス転送によるリンクを確立する新しい方法を提案する。
このアプローチでは,言語モデリングとイメージキャプションという,2つの異なるタスクに対して,非自明な転送メリットを示す。
また,同一画像に基づく自然言語キャプションに創発的メッセージを翻訳することで,創発的言語の伝達可能性を予測する新しい指標を提案する。
論文 参考訳(メタデータ) (2022-03-24T21:24:54Z) - Multilingual Text Classification for Dravidian Languages [4.264592074410622]
そこで我々はDravidian言語のための多言語テキスト分類フレームワークを提案する。
一方、フレームワークはLaBSE事前訓練モデルをベースモデルとして使用した。
一方,モデルが言語間の相関を十分に認識・活用できないという問題を考慮し,さらに言語固有の表現モジュールを提案する。
論文 参考訳(メタデータ) (2021-12-03T04:26:49Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - Natural Language Generation Using Link Grammar for General
Conversational Intelligence [0.0]
Link Grammarデータベースを用いて,文法的に有効な文を自動的に生成する手法を提案する。
この自然言語生成方法は、最先端のベースラインをはるかに上回り、プロトAGI質問応答パイプラインの最終コンポーネントとして機能する。
論文 参考訳(メタデータ) (2021-04-19T06:16:07Z) - Language Models as Few-Shot Learner for Task-Oriented Dialogue Systems [74.8759568242933]
タスク指向対話システムは、自然言語理解(NLU)、対話状態追跡(DST)、対話ポリシー(DP)、自然言語生成(NLG)の4つの連結モジュールを使用する。
研究課題は、データ収集に関連する高コストから最小限のサンプルで各モジュールを学習することである。
我々は,NLU,DP,NLGタスクにおいて,言語モデルの素小ショット能力を評価する。
論文 参考訳(メタデータ) (2020-08-14T08:23:21Z) - Neural Language Generation: Formulation, Methods, and Evaluation [13.62873478165553]
ニューラルネットワークに基づく生成モデリングの最近の進歩は、人間とシームレスに会話できるコンピュータシステムの実現への期待を再燃させた。
大規模データセットでトレーニングされた高容量ディープラーニングモデルは、明示的な監視信号の欠如にもかかわらず、データのパターンを学習する非並列的な能力を示している。
これらの生成モデルが生成するテキストの品質を評価する標準的な方法は存在しないため、フィールドの進行に深刻なボトルネックが生じる。
論文 参考訳(メタデータ) (2020-07-31T00:08:28Z) - Schema-Guided Natural Language Generation [13.11874946084068]
誘導自然言語生成(SG-NLG)の課題について紹介する。
SG-NLGでは、まだ自然言語プロンプトを生成することが目標であるが、SG-NLGでは、入力MRとコンテキスト情報を提供するリッチスキーマがペアリングされる。
このデータセットに基づいて、ニューラルネットワーク生成のためのさまざまな最先端モデルをトレーニングし、リッチスキーマ情報を含む多くのケースにおいて、私たちのモデルがより高い品質の出力を生成することができることを示す。
論文 参考訳(メタデータ) (2020-05-11T23:01:22Z) - Few-shot Natural Language Generation for Task-Oriented Dialog [113.07438787659859]
FewShotWozは,タスク指向対話システムにおける数ショットの学習設定をシミュレートする最初の NLG ベンチマークである。
我々は, SC-GPTモデルを開発し, その制御可能な生成能力を得るために, 注釈付きNLGコーパスの大規模なセットで事前学習を行った。
FewShotWozとMulti-Domain-WOZデータセットの実験は、提案したSC-GPTが既存の手法を大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2020-02-27T18:48:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。