PH2ST:ST-Prompt Guided Histological Hypergraph Learning for Spatial Gene Expression Prediction
- URL: http://arxiv.org/abs/2503.16816v2
- Date: Sun, 20 Apr 2025 09:02:29 GMT
- Title: PH2ST:ST-Prompt Guided Histological Hypergraph Learning for Spatial Gene Expression Prediction
- Authors: Yi Niu, Jiashuai Liu, Yingkang Zhan, Jiangbo Shi, Di Zhang, Marika Reinius, Ines Machado, Mireia Crispin-Ortuzar, Jialun Wu, Chen Li, Zeyu Gao,
- Abstract summary: We propose PH2ST, a prompt-guided hypergraph learning framework, to guide multi-scale histological representation learning for spatial gene expression prediction.<n> PH2ST not only outperforms existing state-of-the-art methods, but also shows strong potential for practical applications such as imputing missing spots, ST super-resolution, and local-to-global prediction.
- Score: 9.420121324844066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial Transcriptomics (ST) reveals the spatial distribution of gene expression in tissues, offering critical insights into biological processes and disease mechanisms. However, the high cost, limited coverage, and technical complexity of current ST technologies restrict their widespread use in clinical and research settings, making obtaining high-resolution transcriptomic profiles across large tissue areas challenging. Predicting ST from H\&E-stained histology images has emerged as a promising alternative to address these limitations but remains challenging due to the heterogeneous relationship between histomorphology and gene expression, which is affected by substantial variability across patients and tissue sections. In response, we propose PH2ST, a prompt-guided hypergraph learning framework, which leverages limited ST signals to guide multi-scale histological representation learning for accurate and robust spatial gene expression prediction. Extensive evaluations on two public ST datasets and multiple prompt sampling strategies simulating real-world scenarios demonstrate that PH2ST not only outperforms existing state-of-the-art methods, but also shows strong potential for practical applications such as imputing missing spots, ST super-resolution, and local-to-global prediction, highlighting its value for scalable and cost-effective spatial gene expression mapping in biomedical contexts.
Related papers
- From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis [81.19923502845441]
We develop a graph-based framework that constructs WSI graph representations.<n>We build tissue representations (nodes) that follow biological boundaries rather than arbitrary patches.<n>In our method's final step, we solve the diagnostic task through a graph attention network.
arXiv Detail & Related papers (2025-03-14T20:15:04Z) - MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease.<n>We present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention.<n>Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance.
arXiv Detail & Related papers (2025-03-01T07:02:30Z) - GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.<n>Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.<n>It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Epidemiology-informed Graph Neural Network for Heterogeneity-aware Epidemic Forecasting [46.63739322178277]
Recent studies have demonstrated the strong potential of of-temporal neural networks (STGNNs) in extracting heterogeneous-temporal epidemic patterns.
HeatGNN learns epidemiology-informed locations embedding different locations that reflect their own transmission mechanisms over time.
HeatGNN outperforms various strong baselines of HeatHeat on different sizes of Heat.
arXiv Detail & Related papers (2024-11-26T12:29:45Z) - Multi-modal Spatial Clustering for Spatial Transcriptomics Utilizing High-resolution Histology Images [1.3124513975412255]
spatial transcriptomics (ST) enables transcriptome-wide gene expression profiling while preserving spatial context.
Current spatial clustering methods fail to fully integrate high-resolution histology image features with gene expression data.
We propose a novel contrastive learning-based deep learning approach that integrates gene expression data with histology image features.
arXiv Detail & Related papers (2024-10-31T00:32:24Z) - Multimodal contrastive learning for spatial gene expression prediction using histology images [13.47034080678041]
We propose textbfmclSTExp, a multimodal contrastive learning with Transformer and Densenet-121 encoder for Spatial Transcriptomics Expression prediction.
textbfmclSTExp has superior performance in predicting spatial gene expression.
It has shown promise in interpreting cancer-specific overexpressed genes, elucidating immune-related genes, and identifying specialized spatial domains annotated by pathologists.
arXiv Detail & Related papers (2024-07-11T06:33:38Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - Spatially Resolved Gene Expression Prediction from Histology via Multi-view Graph Contrastive Learning with HSIC-bottleneck Regularization [18.554968935341236]
We propose a Multi-view Graph Contrastive Learning framework with HSIC-bottleneck Regularization(ST-GCHB) to help impute the gene expression of the queried imagingspots by considering their spatial dependency.
arXiv Detail & Related papers (2024-06-18T03:07:25Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - Accurate Spatial Gene Expression Prediction by integrating Multi-resolution features [0.0]
TRIPLEX is a novel deep learning framework designed to predict spatial gene expression from Whole Slide Images (WSIs)
Our benchmark study, conducted on three public ST datasets, demonstrates that TRIPLEX outperforms current state-of-the-art models in Mean Squared Error (MSE), Mean Absolute Error (MAE), and Pearson Correlation Coefficient (PCC)
The model's predictions align closely with ground truth gene expression profiles and tumor annotations, underscoring TRIPLEX's potential in advancing cancer diagnosis and treatment.
arXiv Detail & Related papers (2024-03-12T12:25:38Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - A self-supervised framework for learning whole slide representations [52.774822784847565]
We present Slide Pre-trained Transformers (SPT) for gigapixel-scale self-supervision of whole slide images.
We benchmark SPT visual representations on five diagnostic tasks across three biomedical microscopy datasets.
arXiv Detail & Related papers (2024-02-09T05:05:28Z) - SEPAL: Spatial Gene Expression Prediction from Local Graphs [1.4523812806185954]
We present SEPAL, a new model for predicting genetic profiles from visual tissue appearance.
Our method exploits the biological biases of the problem by directly supervising relative differences with respect to mean expression.
We propose a novel benchmark that aims to better define the task by following current best practices in transcriptomics.
arXiv Detail & Related papers (2023-09-02T23:24:02Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.