MARS: A Multi-Agent Framework Incorporating Socratic Guidance for Automated Prompt Optimization
- URL: http://arxiv.org/abs/2503.16874v1
- Date: Fri, 21 Mar 2025 06:19:55 GMT
- Title: MARS: A Multi-Agent Framework Incorporating Socratic Guidance for Automated Prompt Optimization
- Authors: Jian Zhang, Zhangqi Wang, Haiping Zhu, Jun Liu, Qika Lin, Erik Cambria,
- Abstract summary: We propose a Multi-Agent framework incorporating Socratic guidance (MARS)<n>MARS comprises seven agents, each with distinct functionalities, which autonomously use the Planner to devise an optimization path.<n>We conduct extensive experiments on various datasets to validate the effectiveness of our method.
- Score: 30.748085697067154
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The basic question-answering format of large language models involves inputting a prompt and receiving a response, and the quality of the prompt directly impacts the effectiveness of the response. Automated Prompt Optimization (APO) aims to break free from the cognitive biases of manually designed prompts and explores a broader design space for prompts. However, existing APO methods suffer from limited flexibility of fixed templates and inefficient search in prompt spaces as key issues. To this end, we propose a Multi-Agent framework Incorporating Socratic guidance (MARS), which utilizes multi-agent fusion technology for automatic planning, with gradual continuous optimization and evaluation. Specifically, MARS comprises seven agents, each with distinct functionalities, which autonomously use the Planner to devise an optimization path that ensures flexibility. Additionally, it employs a Teacher-Critic-Student Socratic dialogue pattern to iteratively optimize the prompts while conducting effective search. We conduct extensive experiments on various datasets to validate the effectiveness of our method, and perform additional analytical experiments to assess the model's advancement as well as the interpretability.
Related papers
- Evolving Prompts In-Context: An Open-ended, Self-replicating Perspective [65.12150411762273]
We show that pruning random demonstrations into seemingly incoherent "gibberish" can remarkably improve performance across diverse tasks.<n>We propose a self-discover prompt optimization framework, PromptQuine, that automatically searches for the pruning strategy by itself using only low-data regimes.
arXiv Detail & Related papers (2025-06-22T07:53:07Z) - ORPP: Self-Optimizing Role-playing Prompts to Enhance Language Model Capabilities [64.24517317344959]
High-quality prompts are crucial for eliciting outstanding performance from large language models on complex tasks.<n>We propose ORPP, a framework that enhances model performance by optimizing and generating role-playing prompts.<n>We show that ORPP not only matches but in most cases surpasses existing mainstream prompt optimization methods in terms of performance.
arXiv Detail & Related papers (2025-06-03T05:51:35Z) - Tournament of Prompts: Evolving LLM Instructions Through Structured Debates and Elo Ratings [0.9437165725355702]
We introduce DEEVO, a novel framework that guides prompt evolution through a debate-driven evaluation with an Elo-based selection.<n>Using Elo ratings as a fitness proxy, DEEVO simultaneously drives improvement and preserves valuable diversity in the prompt population.
arXiv Detail & Related papers (2025-05-30T19:33:41Z) - Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance.
We propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier.
arXiv Detail & Related papers (2025-04-02T17:40:47Z) - A Sequential Optimal Learning Approach to Automated Prompt Engineering in Large Language Models [14.483240353801074]
This paper proposes an optimal learning framework for automated prompt engineering.<n>It is designed to sequentially identify effective prompt features while efficiently allocating a limited evaluation budget.<n>Our framework provides a solution to deploying automated prompt engineering in a wider range applications.
arXiv Detail & Related papers (2025-01-07T03:51:10Z) - AMPO: Automatic Multi-Branched Prompt Optimization [43.586044739174646]
We present AMPO, an automatic prompt optimization method that can iteratively develop a multi-branched prompt using failure cases as feedback.
In experiments across five tasks, AMPO consistently achieves the best results.
arXiv Detail & Related papers (2024-10-11T10:34:28Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
Large language models (LLMs) have achieved great success across diverse tasks, and fine-tuning is sometimes needed to further enhance generation quality.<n>To handle these challenges, a direct solution is to generate high-confidence'' data from unsupervised downstream tasks.<n>We propose a novel approach, pseudo-supervised demonstrations aligned prompt optimization (PAPO) algorithm, which jointly refines both the prompt and the overall pseudo-supervision.
arXiv Detail & Related papers (2024-10-04T03:39:28Z) - M$^2$PT: Multimodal Prompt Tuning for Zero-shot Instruction Learning [90.75075886543404]
Multimodal Large Language Models (MLLMs) demonstrate remarkable performance across a wide range of domains.
In this work, we introduce a novel Multimodal Prompt Tuning (M$2$PT) approach for efficient instruction tuning of MLLMs.
arXiv Detail & Related papers (2024-09-24T01:40:24Z) - Enhancing LLM-Based Text Classification in Political Science: Automatic Prompt Optimization and Dynamic Exemplar Selection for Few-Shot Learning [1.6967824074619953]
Large language models (LLMs) offer substantial promise for text classification in political science.
Our framework enhances LLM performance through automatic prompt optimization, dynamic exemplar selection, and a consensus mechanism.
An open-source Python package (PoliPrompt) is available on GitHub.
arXiv Detail & Related papers (2024-09-02T21:05:31Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - Efficient Prompting Methods for Large Language Models: A Survey [50.82812214830023]
Efficient Prompting Methods have attracted a wide range of attention.<n>We discuss Automatic Prompt Engineering for different prompt components and Prompt Compression in continuous and discrete spaces.
arXiv Detail & Related papers (2024-04-01T12:19:08Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - TEMPERA: Test-Time Prompting via Reinforcement Learning [57.48657629588436]
We propose Test-time Prompt Editing using Reinforcement learning (TEMPERA)
In contrast to prior prompt generation methods, TEMPERA can efficiently leverage prior knowledge.
Our method achieves 5.33x on average improvement in sample efficiency when compared to the traditional fine-tuning methods.
arXiv Detail & Related papers (2022-11-21T22:38:20Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL)
RLPrompt is flexibly applicable to different types of LMs, such as masked gibberish (e.g., grammaBERT) and left-to-right models (e.g., GPTs)
Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods.
arXiv Detail & Related papers (2022-05-25T07:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.