Malliavin-Bismut Score-based Diffusion Models
- URL: http://arxiv.org/abs/2503.16917v1
- Date: Fri, 21 Mar 2025 07:27:10 GMT
- Title: Malliavin-Bismut Score-based Diffusion Models
- Authors: Ehsan Mirafzali, Utkarsh Gupta, Patrick Wyrod, Frank Proske, Daniele Venturi, Razvan Marinescu,
- Abstract summary: We introduce a new framework that employs Malliavin calculus to derive explicit expressions for the score function.<n>In doing so, we establish a rigorous connection between the Malliavin derivative, its adjoint, Bismut's formula, and diffusion generative models.<n>We derive a closed-form expression for $nabla log p_t(x)$ for nonlinear SDEs with state-independent diffusion coefficients.
- Score: 4.8357445794151594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a new framework that employs Malliavin calculus to derive explicit expressions for the score function -- i.e., the gradient of the log-density -- associated with solutions to stochastic differential equations (SDEs). Our approach integrates classical integration-by-parts techniques with modern tools, such as Bismut's formula and Malliavin calculus, to address linear and nonlinear SDEs. In doing so, we establish a rigorous connection between the Malliavin derivative, its adjoint (the Malliavin divergence or the Skorokhod integral), Bismut's formula, and diffusion generative models, thus providing a systematic method for computing $\nabla \log p_t(x)$. For the linear case, we present a detailed study proving that our formula is equivalent to the actual score function derived from the solution of the Fokker--Planck equation for linear SDEs. Additionally, we derive a closed-form expression for $\nabla \log p_t(x)$ for nonlinear SDEs with state-independent diffusion coefficients. These advancements provide fresh theoretical insights into the smoothness and structure of probability densities and practical implications for score-based generative modelling, including the design and analysis of new diffusion models. Moreover, our findings promote the adoption of the robust Malliavin calculus framework in machine learning research. These results directly apply to various pure and applied mathematics fields, such as generative modelling, the study of SDEs driven by fractional Brownian motion, and the Fokker--Planck equations associated with nonlinear SDEs.
Related papers
- Principled model selection for stochastic dynamics [0.0]
PASTIS is a principled method combining likelihood-estimation statistics with extreme value theory to suppress superfluous parameters.<n>It reliably identifies minimal models, even with low sampling rates or measurement error.<n>It applies to partial differential equations, and applies to ecological networks and reaction-diffusion dynamics.
arXiv Detail & Related papers (2025-01-17T18:23:16Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Wasserstein proximal operators describe score-based generative models
and resolve memorization [12.321631823103894]
We first formulate SGMs in terms of the Wasserstein proximal operator (WPO)
We show that WPO describes the inductive bias of diffusion and score-based models.
We present an interpretable kernel-based model for the score function which dramatically improves the performance of SGMs.
arXiv Detail & Related papers (2024-02-09T03:33:13Z) - Closing the ODE-SDE gap in score-based diffusion models through the
Fokker-Planck equation [0.562479170374811]
We rigorously describe the range of dynamics and approximations that arise when training score-based diffusion models.
We show numerically that conventional score-based diffusion models can exhibit significant differences between ODE- and SDE-induced distributions.
arXiv Detail & Related papers (2023-11-27T16:44:50Z) - Causal Modeling with Stationary Diffusions [89.94899196106223]
We learn differential equations whose stationary densities model a system's behavior under interventions.
We show that they generalize to unseen interventions on their variables, often better than classical approaches.
Our inference method is based on a new theoretical result that expresses a stationarity condition on the diffusion's generator in a reproducing kernel Hilbert space.
arXiv Detail & Related papers (2023-10-26T14:01:17Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - Score-based Generative Modeling Through Backward Stochastic Differential
Equations: Inversion and Generation [6.2255027793924285]
The proposed BSDE-based diffusion model represents a novel approach to diffusion modeling, which extends the application of differential equations (SDEs) in machine learning.
We demonstrate the theoretical guarantees of the model, the benefits of using Lipschitz networks for score matching, and its potential applications in various areas such as diffusion inversion, conditional diffusion, and uncertainty quantification.
arXiv Detail & Related papers (2023-04-26T01:15:35Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Approximate Latent Force Model Inference [1.3927943269211591]
latent force models offer an interpretable alternative to purely data driven tools for inference in dynamical systems.
We show that a neural operator approach can scale our model to thousands of instances, enabling fast, distributed computation.
arXiv Detail & Related papers (2021-09-24T09:55:00Z) - Stationary Density Estimation of It\^o Diffusions Using Deep Learning [6.8342505943533345]
We consider the density estimation problem associated with the stationary measure of ergodic Ito diffusions from a discrete-time series.
We employ deep neural networks to approximate the drift and diffusion terms of the SDE.
We establish the convergence of the proposed scheme under appropriate mathematical assumptions.
arXiv Detail & Related papers (2021-09-09T01:57:14Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.