論文の概要: Center-guided Classifier for Semantic Segmentation of Remote Sensing Images
- arxiv url: http://arxiv.org/abs/2503.16963v1
- Date: Fri, 21 Mar 2025 09:21:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:56:47.690675
- Title: Center-guided Classifier for Semantic Segmentation of Remote Sensing Images
- Title(参考訳): リモートセンシング画像のセマンティックセグメンテーションのための中心誘導型分類器
- Authors: Wei Zhang, Mengting Ma, Yizhen Jiang, Rongrong Lian, Zhenkai Wu, Kangning Cui, Xiaowen Ma,
- Abstract要約: CenterSegはリモートセンシング画像のセマンティックセグメンテーションのための新しい分類器である。
複数のプロトタイプ、グラスマン多様体の直接監督、解釈可能性戦略の問題を解決する。
優れたパフォーマンスに加えて、CenterSegにはシンプルさ、軽量さ、互換性、解釈可能性という利点がある。
- 参考スコア(独自算出の注目度): 2.803715177543843
- License:
- Abstract: Compared with natural images, remote sensing images (RSIs) have the unique characteristic. i.e., larger intraclass variance, which makes semantic segmentation for remote sensing images more challenging. Moreover, existing semantic segmentation models for remote sensing images usually employ a vanilla softmax classifier, which has three drawbacks: (1) non-direct supervision for the pixel representations during training; (2) inadequate modeling ability of parametric softmax classifiers under large intraclass variance; and (3) opaque process of classification decision. In this paper, we propose a novel classifier (called CenterSeg) customized for RSI semantic segmentation, which solves the abovementioned problems with multiple prototypes, direct supervision under Grassmann manifold, and interpretability strategy. Specifically, for each class, our CenterSeg obtains local class centers by aggregating corresponding pixel features based on ground-truth masks, and generates multiple prototypes through hard attention assignment and momentum updating. In addition, we introduce the Grassmann manifold and constrain the joint embedding space of pixel features and prototypes based on two additional regularization terms. Especially, during the inference, CenterSeg can further provide interpretability to the model by restricting the prototype as a sample of the training set. Experimental results on three remote sensing segmentation datasets validate the effectiveness of the model. Besides the superior performance, CenterSeg has the advantages of simplicity, lightweight, compatibility, and interpretability. Code is available at https://github.com/xwmaxwma/rssegmentation.
- Abstract(参考訳): 自然画像と比較して、リモートセンシング画像(RSI)には独特の特徴がある。
リモートセンシング画像のセマンティックセグメンテーションをより困難にする。
さらに、既存のリモートセンシング画像のセマンティックセグメンテーションモデルでは、(1)訓練中の画素表現の非直接監督、(2)大規模なクラス内分散下でのパラメトリックソフトマックス分類器のモデリング能力の不十分、(3)分類決定の不透明なプロセスの3つの欠点があるバニラソフトマックス分類器を用いる。
本稿では,複数のプロトタイプによる上述の問題,グラスマン多様体による直接監督,解釈可能性戦略を解消する,RSIセマンティックセマンティックセマンティックセマンティクス用にカスタマイズされた新しい分類器(CenterSeg)を提案する。
具体的には,各クラスごとに,接地トラスマスクに基づいて対応する画素の特徴を集約することで,局所的なクラスセンターを取得し,ハードアテンションの割り当てとモーメントの更新によって複数のプロトタイプを生成する。
さらに、グラスマン多様体を導入し、2つの追加正規化項に基づいて画素特徴量とプロトタイプの合同埋め込み空間を制約する。
特に、推論の間、CenterSegは、トレーニングセットのサンプルとしてプロトタイプを制限することで、モデルへの解釈性をさらに提供できる。
3つのリモートセンシングセグメンテーションデータセットの実験結果から,モデルの有効性が検証された。
優れたパフォーマンスに加えて、CenterSegにはシンプルさ、軽量さ、互換性、解釈可能性という利点がある。
コードはhttps://github.com/xwmaxwma/rssegmentation.comで入手できる。
関連論文リスト
- Pixel-Level Domain Adaptation: A New Perspective for Enhancing Weakly Supervised Semantic Segmentation [13.948425538725138]
画素単位の領域不変性を学習する際のモデルとして,Pixel-Level Domain Adaptation (PLDA)法を提案する。
我々は,幅広い環境下でのアプローチの有効性を実験的に実証した。
論文 参考訳(メタデータ) (2024-08-04T14:14:54Z) - LOGCAN++: Adaptive Local-global class-aware network for semantic segmentation of remote sensing imagery [6.715911889086415]
LOGCAN++はリモートセンシング画像用にカスタマイズされたセマンティックセグメンテーションモデルである。
GCA(Global Class Awareness)モジュールとLCA(Local Class Awareness)モジュールで構成されている。
LCAモジュールは、グローバルクラス表現と間接的にピクセルを関連付けるために、中間知覚要素としてローカルクラス表現を生成する。
論文 参考訳(メタデータ) (2024-06-24T10:12:03Z) - View-Consistent Hierarchical 3D Segmentation Using Ultrametric Feature Fields [52.08335264414515]
我々は3次元シーンを表すニューラル・レージアンス・フィールド(NeRF)内の新しい特徴場を学習する。
本手法は、ビュー一貫性の多粒性2Dセグメンテーションを入力とし、3D一貫性のセグメンテーションの階層構造を出力として生成する。
提案手法と,多視点画像と多粒性セグメンテーションを用いた合成データセットのベースラインの評価を行い,精度と視点整合性を向上したことを示す。
論文 参考訳(メタデータ) (2024-05-30T04:14:58Z) - SSA-Seg: Semantic and Spatial Adaptive Pixel-level Classifier for Semantic Segmentation [11.176993272867396]
本稿ではセマンティック・空間適応(SSA-Seg)を提案し,セマンティックセグメンテーションの課題に対処する。
具体的には、固定されたプロトタイプから得られた粗いマスクを用いて、テスト画像のセマンティック領域と空間領域の中心に向けて固定されたプロトタイプを調整する。
その結果,提案したSSA-Segは,計算コストを最小限に抑えながら,ベースラインモデルのセグメンテーション性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-10T15:14:23Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
本稿では,FS-PCSによる3Dポイント・クラウドセマンティックセマンティックセグメンテーションについて再検討する。
我々は、最先端の2つの重要な問題、前景の漏洩とスパースポイントの分布に焦点をあてる。
これらの問題に対処するために、新しいベンチマークを構築するための標準化されたFS-PCS設定を導入する。
論文 参考訳(メタデータ) (2024-03-01T15:14:47Z) - Unicom: Universal and Compact Representation Learning for Image
Retrieval [65.96296089560421]
大規模LAION400Mを,CLIPモデルにより抽出された共同テキストと視覚的特徴に基づいて,100万の擬似クラスにクラスタリングする。
このような矛盾を緩和するために、我々は、マージンベースのソフトマックス損失を構築するために、ランダムにクラス間の部分的なプロトタイプを選択する。
提案手法は,複数のベンチマークにおいて,教師なし,教師なしの画像検索手法よりも優れていた。
論文 参考訳(メタデータ) (2023-04-12T14:25:52Z) - CAR: Class-aware Regularizations for Semantic Segmentation [20.947897583427192]
特徴学習におけるクラス内分散とクラス間距離を最適化するためのクラス認識正規化(CAR)手法を提案する。
本手法は,OCRやCPNetを含む既存のセグメンテーションモデルに容易に適用することができる。
論文 参考訳(メタデータ) (2022-03-14T15:02:48Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
航空画像のセグメンテーションにはいくつかの独特な課題があり、中でも最も重要なものは前景と背景のアンバランスにある。
本稿では,階層的なセグメンテーション手法を採用し,マルチスケール表現を適応的に活用するAdaptive Focus Framework (AF$)を提案する。
AF$は、広く使われている3つの航空ベンチマークの精度を大幅に改善した。
論文 参考訳(メタデータ) (2022-02-18T10:14:45Z) - Remote Sensing Images Semantic Segmentation with General Remote Sensing
Vision Model via a Self-Supervised Contrastive Learning Method [13.479068312825781]
リモートセマンティックセグメンテーションのためのGlobal style and Local matching Contrastive Learning Network (GLCNet)を提案する。
具体的には、画像レベルの表現をより良く学習するために、グローバルスタイルのコントラストモジュールが使用される。
コントラストモジュールにマッチするローカル特徴は、セマンティックセグメンテーションに有用なローカル領域の表現を学習するために設計されている。
論文 参考訳(メタデータ) (2021-06-20T03:03:40Z) - Semantic Distribution-aware Contrastive Adaptation for Semantic
Segmentation [50.621269117524925]
ドメイン適応セマンティックセグメンテーション(ドメイン適応セマンティックセグメンテーション)とは、特定のソースドメインのアノテーションだけで特定のターゲットドメイン上で予測を行うことを指す。
画素ワイド表示アライメントを可能にする意味分布対応コントラスト適応アルゴリズムを提案する。
複数のベンチマークでSDCAを評価し、既存のアルゴリズムを大幅に改善します。
論文 参考訳(メタデータ) (2021-05-11T13:21:25Z) - Prototype Mixture Models for Few-shot Semantic Segmentation [50.866870384596446]
サポートやクエリ画像内のオブジェクトが外観やポーズで大きく異なる可能性があるため、ショットのセグメンテーションは難しい。
プロトタイプベースセマンティック表現を強制するために,多種多様な画像領域と複数のプロトタイプとの相関関係を持つプロトタイプ混合モデル(PMMs)を提案する。
PMMはMS-COCOの5ショットセグメンテーション性能を最大5.82%改善し、モデルサイズと推論速度の適度なコストに留まった。
論文 参考訳(メタデータ) (2020-08-10T04:33:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。