論文の概要: ARFlow: Human Action-Reaction Flow Matching with Physical Guidance
- arxiv url: http://arxiv.org/abs/2503.16973v1
- Date: Fri, 21 Mar 2025 09:41:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:58:19.491644
- Title: ARFlow: Human Action-Reaction Flow Matching with Physical Guidance
- Title(参考訳): ARFlow: 物理的なガイダンスと一致した人間のアクション-反応フロー
- Authors: Wentao Jiang, Jingya Wang, Haotao Lu, Kaiyang Ji, Baoxiong Jia, Siyuan Huang, Ye Shi,
- Abstract要約: Action-Reaction Flow Matchingは、直接アクションから反応へのマッピングを確立する新しいフレームワークである。
提案手法では,速度場ではなく人体の動きを直接出力するx1-prediction法と,サンプリング中の身体の侵入を効果的に防止するトレーニング不要で勾配に基づく物理的誘導機構を導入する。
- 参考スコア(独自算出の注目度): 34.33083853308399
- License:
- Abstract: Human action-reaction synthesis, a fundamental challenge in modeling causal human interactions, plays a critical role in applications ranging from virtual reality to social robotics. While diffusion-based models have demonstrated promising performance, they exhibit two key limitations for interaction synthesis: reliance on complex noise-to-reaction generators with intricate conditional mechanisms, and frequent physical violations in generated motions. To address these issues, we propose Action-Reaction Flow Matching (ARFlow), a novel framework that establishes direct action-to-reaction mappings, eliminating the need for complex conditional mechanisms. Our approach introduces two key innovations: an x1-prediction method that directly outputs human motions instead of velocity fields, enabling explicit constraint enforcement; and a training-free, gradient-based physical guidance mechanism that effectively prevents body penetration artifacts during sampling. Extensive experiments on NTU120 and Chi3D datasets demonstrate that ARFlow not only outperforms existing methods in terms of Fr\'echet Inception Distance and motion diversity but also significantly reduces body collisions, as measured by our new Intersection Volume and Intersection Frequency metrics.
- Abstract(参考訳): ヒューマン・アクション・リアクション・シンセサイザー(Human Action-Reaction synthesis)は、人間の因果関係をモデル化するための基本的な課題であり、バーチャルリアリティーからソーシャル・ロボティクスまで、アプリケーションにおいて重要な役割を果たす。
拡散に基づくモデルは有望な性能を示す一方で、複雑な条件機構を持つ複雑なノイズ対反応生成器への依存と、生成された動きにおける頻繁な物理的違反という、相互作用合成の2つの重要な限界を示す。
これらの問題に対処するために,アクション・アクション・フローマッチング(ARFlow)を提案する。
提案手法では,速度場ではなく人体の動きを直接出力し,明示的な拘束力を実現するx1-prediction法と,サンプリング中の身体の侵入を効果的に防止するトレーニング不要で勾配に基づく物理的誘導機構を導入している。
NTU120とChi3Dデータセットの大規模な実験により、ARFlowは既存の手法よりもFr\echet Inception Distanceと動きの多様性に優れるだけでなく、新しいIntersection VolumeとIntersection Frequencyの計測値によって、身体の衝突を著しく減少させることが示された。
関連論文リスト
- Two-in-One: Unified Multi-Person Interactive Motion Generation by Latent Diffusion Transformer [24.166147954731652]
多人数対話型モーション生成はコンピュータ・キャラクター・アニメーションにおける重要な領域であるが、未探索領域である。
現在の研究では、個々の動作に別々のモジュールブランチを使用することが多いため、インタラクション情報が失われる。
本稿では,複数の人物の動きとその相互作用を1つの潜在空間内でモデル化する,新しい統一的アプローチを提案する。
論文 参考訳(メタデータ) (2024-12-21T15:35:50Z) - InterDyn: Controllable Interactive Dynamics with Video Diffusion Models [50.38647583839384]
我々は、初期フレームと駆動対象またはアクターの動作を符号化する制御信号が与えられたインタラクティブなダイナミクスのビデオを生成するフレームワークであるInterDynを提案する。
私たちの重要な洞察は、大規模なビデオ生成モデルは、大規模ビデオデータからインタラクティブなダイナミクスを学習し、ニューラルネットワークと暗黙の物理シミュレータの両方として機能できるということです。
論文 参考訳(メタデータ) (2024-12-16T13:57:02Z) - ReGenNet: Towards Human Action-Reaction Synthesis [87.57721371471536]
我々は、人間と人間の相互作用の非対称、動的、同期、および詳細な性質を分析する。
本研究では,人間の行動に条件付けされた人間の反応を生成するための,最初のマルチセットヒト行動反応ベンチマークを提案する。
論文 参考訳(メタデータ) (2024-03-18T15:33:06Z) - THOR: Text to Human-Object Interaction Diffusion via Relation Intervention [51.02435289160616]
我々は、リレーショナルインターベンション(THOR)を用いたテキスト誘導型ヒューマンオブジェクト相互作用拡散モデルを提案する。
各拡散段階において、テキスト誘導された人間と物体の動きを開始し、その後、人と物体の関係を利用して物体の動きに介入する。
テキスト記述をシームレスに統合するText2HOIデータセットであるText-BEHAVEを,現在最大規模で公開されている3D HOIデータセットに構築する。
論文 参考訳(メタデータ) (2024-03-17T13:17:25Z) - ReMoS: 3D Motion-Conditioned Reaction Synthesis for Two-Person Interactions [66.87211993793807]
本稿では,2人のインタラクションシナリオにおいて,人の全身運動を合成する拡散モデルReMoSを提案する。
ペアダンス,忍術,キックボクシング,アクロバティックといった2人のシナリオでReMoSを実証する。
また,全身動作と指の動きを含む2人のインタラクションに対してReMoCapデータセットを寄贈した。
論文 参考訳(メタデータ) (2023-11-28T18:59:52Z) - InterDiff: Generating 3D Human-Object Interactions with Physics-Informed
Diffusion [29.25063155767897]
本稿では,3次元物体相互作用(HOI)の予測に向けた新しい課題について述べる。
我々のタスクは、様々な形状の動的物体をモデリングし、全身の動きを捉え、物理的に有効な相互作用を確実にする必要があるため、はるかに困難である。
複数の人-物間相互作用データセットを用いた実験は,本手法の有効性を実証し,現実的で,鮮明で,かつ,極めて長期にわたる3D HOI予測を生成できることを示した。
論文 参考訳(メタデータ) (2023-08-31T17:59:08Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
人間は高度に適応可能で、異なるタスク、状況、状況を扱うために異なるモードを素早く切り替える。
人間と物体の相互作用(HOI)において、これらのモードは、(1)活動全体に対する大規模な一貫した計画、(2)タイムラインに沿って開始・終了する小規模の子どもの対話的行動の2つのメカニズムに起因していると考えられる。
本研究は、人間の動作を協調的に制御する2つの同時メカニズムをモデル化することを提案する。
論文 参考訳(メタデータ) (2023-07-24T12:21:33Z) - BoDiffusion: Diffusing Sparse Observations for Full-Body Human Motion
Synthesis [14.331548412833513]
複合現実感アプリケーションは、没入感のある体験を可能にするために、ユーザのフルボディの動きを追跡する必要がある。
本稿では,この非拘束的再構成問題に対処するために,運動合成のための生成拡散モデルであるBoDiffusionを提案する。
本稿では,スムーズで現実的なフルボディモーションシーケンスを生成しつつ,スパーストラッキング入力をBoDiffusionが活用できる時間空間調和方式を提案する。
論文 参考訳(メタデータ) (2023-04-21T16:39:05Z) - Interaction Transformer for Human Reaction Generation [61.22481606720487]
本稿では,時間的,空間的両方の注意を持つトランスフォーマーネットワークからなる対話型トランスフォーマー(InterFormer)を提案する。
我々の手法は一般的であり、より複雑で長期的な相互作用を生成するのに利用できる。
論文 参考訳(メタデータ) (2022-07-04T19:30:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。