論文の概要: Exploring the Efficacy of Partial Denoising Using Bit Plane Slicing for Enhanced Fracture Identification: A Comparative Study of Deep Learning-Based Approaches and Handcrafted Feature Extraction Techniques
- arxiv url: http://arxiv.org/abs/2503.17030v1
- Date: Fri, 21 Mar 2025 10:39:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:57:41.818964
- Title: Exploring the Efficacy of Partial Denoising Using Bit Plane Slicing for Enhanced Fracture Identification: A Comparative Study of Deep Learning-Based Approaches and Handcrafted Feature Extraction Techniques
- Title(参考訳): ビット平面スライシングによる破壊識別の促進効果の探索 : 深層学習に基づくアプローチと手作り特徴抽出技術の比較
- Authors: Snigdha Paul, Sambit Mallick, Anindya Sen,
- Abstract要約: ビット平面スライシングは、ノイズ干渉を低減し、情報的特徴を抽出することにより、医療画像を強化する。
本研究は, フラクチャー解析改善のための解を提供するための部分的 denoising 技術について検討する。
この研究の結果は、効率的な前処理の開発に関する貴重な洞察を与えてくれる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Computer vision has transformed medical diagnosis, treatment, and research through advanced image processing and machine learning techniques. Fracture classification, a critical area in healthcare, has greatly benefited from these advancements, yet accurate detection is challenged by complex patterns and image noise. Bit plane slicing enhances medical images by reducing noise interference and extracting informative features. This research explores partial denoising techniques to provide practical solutions for improved fracture analysis, ultimately enhancing patient care. The study explores deep learning model DenseNet and handcrafted feature extraction. Decision Tree and Random Forest, were employed to train and evaluate distinct image representations. These include the original image, the concatenation of the four bit planes from the LSB as well as MSB, the fully denoised image, and an image consisting of 6 bit planes from MSB and 2 denoised bit planes from LSB. The purpose of forming these diverse image representations is to analyze SNR as well as classification accuracy and identify the bit planes that contain the most informative features. Moreover, the study delves into the significance of partial denoising techniques in preserving crucial features, leading to improvements in classification results. Notably, this study shows that employing the Random Forest classifier, the partially denoised image representation exhibited a testing accuracy of 95.61% surpassing the performance of other image representations. The outcomes of this research provide valuable insights into the development of efficient preprocessing, feature extraction and classification approaches for fracture identification. By enhancing diagnostic accuracy, these advancements hold the potential to positively impact patient care and overall medical outcomes.
- Abstract(参考訳): コンピュータビジョンは、高度な画像処理と機械学習技術を通じて、診断、治療、研究を変革した。
医療における重要な領域である骨折分類は、これらの進歩の恩恵を受けているが、複雑なパターンや画像ノイズによって正確な検出が困難である。
ビット平面スライシングは、ノイズ干渉を低減し、情報的特徴を抽出することにより、医療画像を強化する。
本研究は, 骨折解析の改善のための実践的解決策を提供するために, 部分的 denoising 技術について検討し, 最終的には患者ケアを増強する。
本研究では,ディープラーニングモデルDenseNetと手作り特徴抽出について検討した。
決定木(Decision Tree)とランダムフォレスト(Random Forest)は、異なる画像表現の訓練と評価に使用された。
これには、元の画像、LSBからの4ビット平面の連結、MSBからの6ビット平面とLSBからの2ビット平面からなる画像が含まれる。
これらの多様な画像表現を形成する目的は、SNRの分類精度を解析し、最も情報性の高い特徴を含むビット平面を特定することである。
さらに, 本研究は, 重要な特徴の保存における部分的復調技術の重要性を考察し, 分類結果の改善につながった。
この研究は、ランダムフォレスト分類器(Random Forest classifier)を用いて、部分復号化画像表現が、他の画像表現よりも95.61%の精度でテストされたことを示している。
本研究の結果は, 効率的な前処理, 特徴抽出, およびフラクチャー識別のための分類手法の開発に関する貴重な知見を提供する。
診断精度を高めることで、これらの進歩は患者のケアと全体的な医療結果に肯定的な影響を与える可能性を秘めている。
関連論文リスト
- Contextual Checkerboard Denoise -- A Novel Neural Network-Based Approach for Classification-Aware OCT Image Denoising [1.8032335403003321]
我々は、ノイズの多い画像のデータセットのみから雑音を学習できる新しいニューラルネットワークベースの手法、emphContextual Checkerboard Denoisingを導入する。
提案手法は画像品質を大幅に改善し,より鮮明で詳細なOCT画像を提供するとともに,診断精度を向上する。
論文 参考訳(メタデータ) (2024-11-29T08:51:43Z) - Convolutional Neural Networks Towards Facial Skin Lesions Detection [0.0]
本研究は,顔画像の点滅や皮膚病変の検出を容易にするモデルを提供することで貢献する。
提案手法は, 簡単なアーキテクチャ, 高速, 画像処理に適するといった利点を提供する。
論文 参考訳(メタデータ) (2024-02-13T16:52:10Z) - Intelligent Cervical Spine Fracture Detection Using Deep Learning
Methods [0.0]
本稿では,各画像スライスにおける頚椎の存在を識別するための2段階パイプラインを提案する。
第1段階では、画像メタデータと画像メタデータを組み込んだマルチインプットネットワークを訓練する。
第2段階では、画像内の骨折を検出するためにYOLOv8モデルを訓練し、その効果をYOLOv5と比較する。
論文 参考訳(メタデータ) (2023-11-09T19:34:42Z) - Exploiting Causality Signals in Medical Images: A Pilot Study with
Empirical Results [1.2400966570867322]
本稿では,ニューラルネットワークによる分類目的の画像から弱い因果信号を発見し,利用するための新しい手法を提案する。
このようにして、画像の1つの部分における特徴の存在が、画像の別の部分における他の特徴の出現にどのように影響するかをモデル化する。
提案手法は,畳み込みニューラルネットワークのバックボーンと因果係数抽出モジュールから構成される。
論文 参考訳(メタデータ) (2023-09-19T08:00:26Z) - DEMIST: A deep-learning-based task-specific denoising approach for
myocardial perfusion SPECT [17.994633874783144]
MPI SPECT画像(DEMIST)を識別するタスク固有深層学習手法を提案する。
この手法は、デノゲーションを行う一方で、検出タスクにおけるオブザーバのパフォーマンスに影響を与える特徴を保存するように設計されている。
以上の結果から,MPI SPECTで低位像を呈示するDEMISTのさらなる臨床評価が示唆された。
論文 参考訳(メタデータ) (2023-06-07T08:40:25Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
本研究では,金属インプラントとの接触部における骨成長の計算アルゴリズムを開発した。
骨とインプラント組織はトレーニングデータセットに手動でセグメンテーションされた。
ネットワーク精度の面では、モデルは約98%に達した。
論文 参考訳(メタデータ) (2022-04-22T08:17:20Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。