論文の概要: Semi-supervised Cervical Segmentation on Ultrasound by A Dual Framework for Neural Networks
- arxiv url: http://arxiv.org/abs/2503.17057v1
- Date: Fri, 21 Mar 2025 11:16:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:55:40.297968
- Title: Semi-supervised Cervical Segmentation on Ultrasound by A Dual Framework for Neural Networks
- Title(参考訳): ニューラルネットワークのデュアルフレームワークによる超音波の半教師付き頚椎分割
- Authors: Fangyijie Wang, Kathleen M. Curran, Guénolé Silvestre,
- Abstract要約: 本研究では,デュアルニューラルネットワークを統合した新しい半教師付き学習(SSL)フレームワークを提案する。
機能学習能力を高めるために,一対の深層表現を用いた自己教師型コントラスト学習戦略が導入された。
本フレームワークは頚椎分割作業における競争性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Accurate segmentation of ultrasound (US) images of the cervical muscles is crucial for precision healthcare. The demand for automatic computer-assisted methods is high. However, the scarcity of labeled data hinders the development of these methods. Advanced semi-supervised learning approaches have displayed promise in overcoming this challenge by utilizing labeled and unlabeled data. This study introduces a novel semi-supervised learning (SSL) framework that integrates dual neural networks. This SSL framework utilizes both networks to generate pseudo-labels and cross-supervise each other at the pixel level. Additionally, a self-supervised contrastive learning strategy is introduced, which employs a pair of deep representations to enhance feature learning capabilities, particularly on unlabeled data. Our framework demonstrates competitive performance in cervical segmentation tasks. Our codes are publicly available on https://github.com/13204942/SSL\_Cervical\_Segmentation.
- Abstract(参考訳): 頚部筋の超音波(US)像の正確なセグメンテーションは,正確な医療に不可欠である。
自動計算機支援手法の需要が高い。
しかし、ラベル付きデータの不足はこれらの手法の開発を妨げる。
高度な半教師付き学習アプローチは、ラベル付きデータとラベルなしデータを活用することで、この課題を克服する可能性を示してきた。
本研究では,デュアルニューラルネットワークを統合した新しい半教師付き学習(SSL)フレームワークを提案する。
このSSLフレームワークは、両方のネットワークを利用して擬似ラベルを生成し、ピクセルレベルで相互に監督する。
さらに、特にラベルなしデータにおいて、機能学習能力を高めるために、深層表現を用いた自己教師付きコントラスト学習戦略が導入された。
本フレームワークは頚椎分割作業における競争性能を示す。
私たちのコードはhttps://github.com/13204942/SSL\Cervical\_Segmentationで公開されています。
関連論文リスト
- Dual-Decoder Consistency via Pseudo-Labels Guided Data Augmentation for
Semi-Supervised Medical Image Segmentation [13.707121013895929]
本稿では, Pseudo-Labels Guided Data Augmentation を用いた新しい半教師付き学習手法である Dual-Decoder Consistency を提案する。
我々は、同じエンコーダを維持しながら、生徒と教師のネットワークに異なるデコーダを使用します。
ラベルのないデータから学習するために、教師ネットワークによって生成された擬似ラベルを作成し、擬似ラベルでトレーニングデータを増強する。
論文 参考訳(メタデータ) (2023-08-31T09:13:34Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive Deep Graph Clustering (CDGC)は、異なるクラスタにノードをグループ化するために、コントラスト学習のパワーを活用する。
我々は、GraphLearnerと呼ばれる、完全学習可能な拡張を備えたグラフノードクラスタリングを提案する。
学習可能な拡張器を導入し、CDGCのための高品質でタスク固有の拡張サンプルを生成する。
論文 参考訳(メタデータ) (2022-12-07T10:19:39Z) - 3N-GAN: Semi-Supervised Classification of X-Ray Images with a 3-Player
Adversarial Framework [0.0]
医用画像の半教師付き分類を行うために,3N-GAN (3 Network Generative Adversarial Networks) を提案する。
予備的な結果は、様々なアルゴリズムによる分類性能とGAN世代の改善を示している。
論文 参考訳(メタデータ) (2021-09-22T23:18:59Z) - Multi-Label Generalized Zero Shot Learning for the Classification of
Disease in Chest Radiographs [0.7734726150561088]
胸部X線画像の複数の病変を同時に予測できるゼロショット学習ネットワークを提案する。
ネットワークはエンドツーエンドのトレーニングが可能で、オフライン機能抽出器の独立した事前トレーニングは不要である。
我々のネットワークは、リコール、精度、f1スコア、受信機動作特性曲線の領域において、2つの強いベースラインを上回ります。
論文 参考訳(メタデータ) (2021-07-14T09:04:20Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Semi-supervised Medical Image Segmentation through Dual-task Consistency [18.18484640332254]
本稿では,画素単位のセグメンテーションマップと,ターゲットの幾何認識レベルセット表現を共同で予測する,新しいデュアルタスクディープネットワークを提案する。
本手法はラベルなしデータを組み込むことで性能を大幅に向上させることができる。
当フレームワークは,最先端の半教師付き医用画像分割法より優れている。
論文 参考訳(メタデータ) (2020-09-09T17:49:21Z) - Semi-supervised deep learning based on label propagation in a 2D
embedded space [117.9296191012968]
提案されたソリューションは、少数の教師なしイメージから多数の教師なしイメージにラベルを伝達し、ディープニューラルネットワークモデルをトレーニングする。
本稿では、より正確なラベル付きサンプルを反復してセットから深層ニューラルネットワーク(VGG-16)をトレーニングするループを提案する。
ラベル付きセットがイテレーションに沿って改善されるにつれて、ニューラルネットワークの機能が改善される。
論文 参考訳(メタデータ) (2020-08-02T20:08:54Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
本稿では,教師付き学習手法よりも少ないアノテーションを要求できる新しいカテーテルセグメンテーション手法を提案する。
提案手法では,Voxelレベルのアノテーションを避けるために,深層Q学習を事前局所化ステップとみなす。
検出されたカテーテルでは、パッチベースのDual-UNetを使用してカテーテルを3Dボリュームデータに分割する。
論文 参考訳(メタデータ) (2020-06-25T21:10:04Z) - Self-supervised Learning on Graphs: Deep Insights and New Direction [66.78374374440467]
自己教師付き学習(SSL)は、ラベルのないデータにドメイン固有のプレテキストタスクを作成することを目的としている。
グラフニューラルネットワーク(GNN)の形でのグラフ領域へのディープラーニングの一般化への関心が高まっている。
論文 参考訳(メタデータ) (2020-06-17T20:30:04Z) - Semi-supervised Medical Image Classification with Global Latent Mixing [8.330337646455957]
ディープラーニングによるコンピュータ支援診断は、大規模な注釈付きデータセットに依存している。
半教師付き学習は、ラベルのないデータを活用することでこの課題を軽減する。
ラベル付きおよびラベルなしデータの線形混合に基づいてニューラルネットワークをトレーニングする新しいSSL手法を提案する。
論文 参考訳(メタデータ) (2020-05-22T14:49:13Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。