論文の概要: A Digital Machine Learning Algorithm Simulating Spiking Neural Network CoLaNET
- arxiv url: http://arxiv.org/abs/2503.17111v1
- Date: Fri, 21 Mar 2025 12:55:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:58:13.486613
- Title: A Digital Machine Learning Algorithm Simulating Spiking Neural Network CoLaNET
- Title(参考訳): スパイクニューラルネットワークCoLaNETを模擬したデジタル機械学習アルゴリズム
- Authors: Mikhail Kiselev,
- Abstract要約: CoLaNET (Collumnar Layered Network) SNNアーキテクチャが発明された。
このアーキテクチャの特徴は、異なるクラスに対応するプロトタイプネットワーク構造の組み合わせである。
これを容易にするために,CoLaNETの挙動を精度よく近似する連続数値(非スパイキング)機械学習アルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: During last several years, our research team worked on development of a spiking neural network (SNN) architecture, which could be used in the wide range of supervised learning classification tasks. It should work under the condition, that all participating signals (the classified object description, correct class label and SNN decision) should have spiking nature. As a result, the CoLaNET (columnar layered network) SNN architecture was invented. The distinctive feature of this architecture is a combination of prototypical network structures corresponding to different classes and significantly distinctive instances of one class (=columns) and functionally differing populations of neurons inside columns (=layers). The other distinctive feature is a novel combination of anti-Hebbian and dopamine-modulated plasticity. While CoLaNET is relatively simple, it includes several hyperparameters. Their choice for particular classification tasks is not trivial. Besides that, specific features of the data classified (e.g. classification of separate pictures like in MNIST dataset vs. classifying objects in a continuous video stream) require certain modifications of CoLaNET structure. To solve these problems, the deep mathematical exploration of CoLaNET should be carried out. However, SNNs, being stochastic discrete systems, are usually very hard for exact mathematical analysis. To make it easier, I developed a continuous numeric (non-spiking) machine learning algorithm which approximates CoLaNET behavior with satisfactory accuracy. It is described in the paper. At present, it is being studied by exact analytic methods. We hope that the results of this study could be applied to direct calculation of CoLaNET hyperparameters and optimization of its structure.
- Abstract(参考訳): 過去数年間、我々の研究チームは、広範囲にわたる教師あり学習分類タスクに使用できるスパイキングニューラルネットワーク(SNN)アーキテクチャの開発に取り組んできた。
すべての参加信号(分類されたオブジェクト記述、正しいクラスラベル、SNN決定)がスパイクの性質を持つべきだという条件の下で動作すべきである。
その結果、CoLaNET (Collumnar Layered Network) SNNアーキテクチャが発明された。
このアーキテクチャの特徴は、異なるクラスに対応する原型ネットワーク構造と、1つのクラス(=カラム)の顕著な特異なインスタンスと、列(=層)内のニューロンの機能的に異なる個体群の組み合わせである。
もう一つの特徴は、抗ヘビアンとドーパミン修飾可塑性の新規な組み合わせである。
CoLaNETは比較的単純だが、いくつかのハイパーパラメータを含んでいる。
特定の分類タスクに対する彼らの選択は自明ではない。
さらに、分類されたデータの特定の特徴(例えば、MNISTデータセットや連続的なビデオストリーム内のオブジェクトの分類など)は、CoLaNET構造の特定の変更を必要とする。
これらの問題を解決するために、CoLaNETの詳細な数学的探索を行う必要がある。
しかしながら、SNNは確率的な離散系であり、正確に数学的解析を行うのは非常に難しい。
これを容易にするために,CoLaNETの挙動を精度よく近似する連続数値(非スパイキング)機械学習アルゴリズムを開発した。
論文に記載されている。
現在、正確な解析手法で研究されている。
本研究の結果が,CoLaNETハイパーパラメータの直接計算と構造最適化に応用できることを期待する。
関連論文リスト
- CoLaNET -- A Spiking Neural Network with Columnar Layered Architecture for Classification [0.0]
本稿では、幅広い教師付き学習分類タスクに使用できるスパイキングニューラルネットワーク(SNN)アーキテクチャについて述べる。
全ての参加信号(分類対象記述、正しいクラスラベル、SNN決定)がスパイクの性質を持つと仮定する。
モデルに基づく強化学習に関わる課題に対して,私のネットワークの性能について解説する。
論文 参考訳(メタデータ) (2024-09-02T13:04:54Z) - Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
スパースニューラルネットワーク(SNN)は、効率的な特徴選択のための強力なツールとして登場した。
動的スパーストレーニング(DST)アルゴリズムで訓練されたSNNは、平均して50%以上のメモリと55%以上のFLOPを削減できることを示す。
以上の結果から,DSTアルゴリズムで訓練したSNNによる特徴選択は,平均して50ドル以上のメモリと55%のFLOPを削減できることがわかった。
論文 参考訳(メタデータ) (2024-08-08T16:48:33Z) - Time Elastic Neural Networks [2.1756081703276]
時間弾性ニューラルネットワーク(teNN)という,非定型ニューラルネットワークアーキテクチャの導入と詳細化について述べる。
古典的ニューラルネットワークアーキテクチャと比較して新しいのは、時間ゆがみ能力を明確に組み込んでいることだ。
トレーニング過程において,TENNは各細胞に必要となるニューロン数を減少させることに成功した。
論文 参考訳(メタデータ) (2024-05-27T09:01:30Z) - Neural Attentive Circuits [93.95502541529115]
我々は、NAC(Neural Attentive Circuits)と呼ばれる汎用的でモジュラーなニューラルアーキテクチャを導入する。
NACは、ドメイン知識を使わずに、ニューラルネットワークモジュールのパラメータ化と疎結合を学習する。
NACは推論時に8倍のスピードアップを達成するが、性能は3%以下である。
論文 参考訳(メタデータ) (2022-10-14T18:00:07Z) - Dynamical systems' based neural networks [0.7874708385247353]
我々は、適切な、構造保存、数値的な時間分散を用いてニューラルネットワークを構築する。
ニューラルネットワークの構造は、ODEベクトル場の特性から推定される。
2つの普遍近似結果を示し、ニューラルネットワークに特定の特性を課す方法を示す。
論文 参考訳(メタデータ) (2022-10-05T16:30:35Z) - Towards a General Purpose CNN for Long Range Dependencies in
$\mathrm{N}$D [49.57261544331683]
構造変化のない任意の解像度,次元,長さのタスクに対して,連続的な畳み込みカーネルを備えた単一CNNアーキテクチャを提案する。
1$mathrmD$)とビジュアルデータ(2$mathrmD$)の幅広いタスクに同じCCNNを適用することで、我々のアプローチの汎用性を示す。
私たちのCCNNは競争力があり、検討されたすべてのタスクで現在の最先端を上回ります。
論文 参考訳(メタデータ) (2022-06-07T15:48:02Z) - Neural networks with linear threshold activations: structure and
algorithms [1.795561427808824]
クラス内で表現可能な関数を表現するのに、2つの隠れたレイヤが必要であることを示す。
また、クラス内の任意の関数を表すのに必要なニューラルネットワークのサイズについて、正確な境界を与える。
我々は,線形しきい値ネットワークと呼ばれるニューラルネットワークの新たなクラスを提案する。
論文 参考訳(メタデータ) (2021-11-15T22:33:52Z) - Neural network relief: a pruning algorithm based on neural activity [47.57448823030151]
重要でない接続を非活性化する簡易な重要スコア計量を提案する。
MNIST上でのLeNetアーキテクチャの性能に匹敵する性能を実現する。
このアルゴリズムは、現在のハードウェアとソフトウェアの実装を考えるとき、FLOPを最小化するように設計されていない。
論文 参考訳(メタデータ) (2021-09-22T15:33:49Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
標準ガウス重みと一様分布バイアスを持つ十分に大きな2層ReLUネットワークは、この問題を高い確率で解くことができることを示す。
我々は、相互複雑性という新しい概念の観点から、データの関連構造を定量化する。
論文 参考訳(メタデータ) (2021-07-31T10:25:26Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
最近提案されたネットワークモデルであるオペレーショナルニューラルネットワーク(ONN)は、従来の畳み込みニューラルネットワーク(CNN)を一般化することができる。
本研究では, 生体ニューロンにおける本質的な学習理論を示すSynaptic Plasticityパラダイムに基づいて, ネットワークの隠蔽ニューロンに対する最強演算子集合の探索に焦点をあてる。
高難易度問題に対する実験結果から、神経細胞や層が少なくても、GISベースのONNよりも優れた学習性能が得られることが示された。
論文 参考訳(メタデータ) (2020-08-21T19:03:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。