LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
- URL: http://arxiv.org/abs/2503.17125v5
- Date: Fri, 28 Mar 2025 06:34:23 GMT
- Title: LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
- Authors: Chan Kim, Seung-Woo Seo, Seong-Woo Kim,
- Abstract summary: We introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation.<n>LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task.<n> Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks.
- Score: 16.093659272414527
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
Related papers
- GTR: Guided Thought Reinforcement Prevents Thought Collapse in RL-based VLM Agent Training [62.536191233049614]
Reinforcement learning with verifiable outcome rewards (RLVR) has effectively scaled up chain-of-thought (CoT) reasoning in large language models (LLMs)<n>This work investigates this problem through extensive experiments on complex card games, such as 24 points, and embodied tasks from ALFWorld.<n>We find that when rewards are based solely on action outcomes, RL fails to incentivize CoT reasoning in VLMs, instead leading to a phenomenon we termed thought collapse.
arXiv Detail & Related papers (2025-03-11T15:17:02Z) - Reusing Embeddings: Reproducible Reward Model Research in Large Language Model Alignment without GPUs [58.18140409409302]
Large Language Models (LLMs) have made substantial strides in structured tasks through Reinforcement Learning (RL)<n>Applying RL in broader domains like chatbots and content generation presents unique challenges.<n>We show a case study of reproducing existing reward model ensemble research using embedding-based reward models.
arXiv Detail & Related papers (2025-02-04T19:37:35Z) - Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training [18.896813839389893]
We propose an iterative self-training framework, Agent-R, that enables language Agent to Reflect on the fly.<n>Unlike traditional methods that reward or penalize actions based on correctness, Agent-R leverages MCTS to construct training data that recover correct trajectories from erroneous ones.<n>Our findings demonstrate that Agent-R continuously improves the model's ability to recover from errors and enables timely error correction.
arXiv Detail & Related papers (2025-01-20T11:46:04Z) - RAG-Modulo: Solving Sequential Tasks using Experience, Critics, and Language Models [5.0741409008225755]
Large language models (LLMs) have emerged as promising tools for solving challenging robotic tasks.
Most existing LLM-based agents lack the ability to retain and learn from past interactions.
We propose RAG-Modulo, a framework that enhances LLM-based agents with a memory of past interactions and incorporates critics to evaluate the agents' decisions.
arXiv Detail & Related papers (2024-09-18T20:03:32Z) - RILe: Reinforced Imitation Learning [60.63173816209543]
RILe is a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently.<n>Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors.
arXiv Detail & Related papers (2024-06-12T17:56:31Z) - Recover: A Neuro-Symbolic Framework for Failure Detection and Recovery [2.0554045007430672]
This paper introduces Recover, a neuro-symbolic framework for online failure identification and recovery.
By integrating logical rules, and LLM-based planners, Recover exploits symbolic information to enhance the ability of LLMs to generate recovery plans.
arXiv Detail & Related papers (2024-03-31T17:54:22Z) - Solving Offline Reinforcement Learning with Decision Tree Regression [0.0]
This study presents a novel approach to addressing offline reinforcement learning problems by reframing them as regression tasks.
We introduce two distinct frameworks: return-conditioned and return-weighted decision tree policies.
Despite the simplification inherent in this reformulated approach to offline RL, our agents demonstrate performance that is at least on par with the established methods.
arXiv Detail & Related papers (2024-01-21T23:50:46Z) - Exploratory State Representation Learning [63.942632088208505]
We propose a new approach called XSRL (eXploratory State Representation Learning) to solve the problems of exploration and SRL in parallel.
On one hand, it jointly learns compact state representations and a state transition estimator which is used to remove unexploitable information from the representations.
On the other hand, it continuously trains an inverse model, and adds to the prediction error of this model a $k$-step learning progress bonus to form the objective of a discovery policy.
arXiv Detail & Related papers (2021-09-28T10:11:07Z) - Persistent Reinforcement Learning via Subgoal Curricula [114.83989499740193]
Value-accelerated Persistent Reinforcement Learning (VaPRL) generates a curriculum of initial states.
VaPRL reduces the interventions required by three orders of magnitude compared to episodic reinforcement learning.
arXiv Detail & Related papers (2021-07-27T16:39:45Z) - Residual Reinforcement Learning from Demonstrations [51.56457466788513]
Residual reinforcement learning (RL) has been proposed as a way to solve challenging robotic tasks by adapting control actions from a conventional feedback controller to maximize a reward signal.
We extend the residual formulation to learn from visual inputs and sparse rewards using demonstrations.
Our experimental evaluation on simulated manipulation tasks on a 6-DoF UR5 arm and a 28-DoF dexterous hand demonstrates that residual RL from demonstrations is able to generalize to unseen environment conditions more flexibly than either behavioral cloning or RL fine-tuning.
arXiv Detail & Related papers (2021-06-15T11:16:49Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.