Reusing Embeddings: Reproducible Reward Model Research in Large Language Model Alignment without GPUs
- URL: http://arxiv.org/abs/2502.04357v1
- Date: Tue, 04 Feb 2025 19:37:35 GMT
- Title: Reusing Embeddings: Reproducible Reward Model Research in Large Language Model Alignment without GPUs
- Authors: Hao Sun, Yunyi Shen, Jean-Francois Ton, Mihaela van der Schaar,
- Abstract summary: Large Language Models (LLMs) have made substantial strides in structured tasks through Reinforcement Learning (RL)<n>Applying RL in broader domains like chatbots and content generation presents unique challenges.<n>We show a case study of reproducing existing reward model ensemble research using embedding-based reward models.
- Score: 58.18140409409302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have made substantial strides in structured tasks through Reinforcement Learning (RL), demonstrating proficiency in mathematical reasoning and code generation. However, applying RL in broader domains like chatbots and content generation -- through the process known as Reinforcement Learning from Human Feedback (RLHF) -- presents unique challenges. Reward models in RLHF are critical, acting as proxies that evaluate the alignment of LLM outputs with human intent. Despite advancements, the development of reward models is hindered by challenges such as computational heavy training, costly evaluation, and therefore poor reproducibility. We advocate for using embedding-based input in reward model research as an accelerated solution to those challenges. By leveraging embeddings for reward modeling, we can enhance reproducibility, reduce computational demands on hardware, improve training stability, and significantly reduce training and evaluation costs, hence facilitating fair and efficient comparisons in this active research area. We then show a case study of reproducing existing reward model ensemble research using embedding-based reward models. We discussed future avenues for research, aiming to contribute to safer and more effective LLM deployments.
Related papers
- Improving RL Exploration for LLM Reasoning through Retrospective Replay [45.00643118030677]
We propose a novel algorithm named Retrospective Replay-based Reinforcement Learning (RRL), which introduces a dynamic replay mechanism throughout the training process.
RRL enables the model to revisit promising states identified in the early stages, thereby improving its efficiency and effectiveness in exploration.
arXiv Detail & Related papers (2025-04-19T17:40:04Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
We investigate how model size, training data scale, and inference-time compute jointly influence generative retrieval performance.
Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws.
We find that LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)
We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.
OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - Does RLHF Scale? Exploring the Impacts From Data, Model, and Method [83.53178716807776]
This study explores the scaling properties of Reinforcement Learning from Human Feedback in Large Language Models.<n>We analyze key components in the RLHF framework--model size, data composition, and inference budget--and their impacts on performance.
arXiv Detail & Related papers (2024-12-08T17:19:48Z) - Regularizing Hidden States Enables Learning Generalizable Reward Model for LLMs [25.011675414622392]
This study introduces a novel approach to enhance the reward model's generalization ability against distribution shifts.
We retain the base model's language model head and incorporate a suite of text-generation losses to preserve the hidden states' text-generation capabilities.
Our experimental results demonstrate that the introduced regularization technique markedly improves the accuracy of learned reward models.
arXiv Detail & Related papers (2024-06-14T17:49:59Z) - Prototypical Reward Network for Data-Efficient RLHF [17.220998116937444]
A reward model for Reinforcement Learning from Human Feedback (RLHF) has proven effective in fine-tuning Large Language Models (LLMs)
Our proposed framework Proto-RM leverages prototypical networks to enhance reward models under limited human feedback.
arXiv Detail & Related papers (2024-06-06T15:23:30Z) - RLHF Deciphered: A Critical Analysis of Reinforcement Learning from Human Feedback for LLMs [49.386699863989335]
Training large language models (LLMs) to serve as effective assistants for humans requires careful consideration.
A promising approach is reinforcement learning from human feedback (RLHF), which leverages human feedback to update the model in accordance with human preferences.
In this paper, we analyze RLHF through the lens of reinforcement learning principles to develop an understanding of its fundamentals.
arXiv Detail & Related papers (2024-04-12T15:54:15Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
We present RewardBench, a benchmark dataset and code-base for evaluation of reward models.
The dataset is a collection of prompt-chosen-rejected trios spanning chat, reasoning, and safety.
On the RewardBench leaderboard, we evaluate reward models trained with a variety of methods.
arXiv Detail & Related papers (2024-03-20T17:49:54Z) - Let's Reinforce Step by Step [10.65244642965387]
We use Reinforcement Learning from Human Feedback to shape model reasoning processes.
Our results show that the fine-grained reward provided by PRM-based methods enhances accuracy on simple mathematical reasoning.
We also show the critical role reward aggregation functions play in model performance.
arXiv Detail & Related papers (2023-11-10T01:35:51Z) - RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment [32.752633250862694]
Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data.
We introduce a new framework, Reward rAnked FineTuning, designed to align generative models effectively.
arXiv Detail & Related papers (2023-04-13T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.