Jitter in photon-number-resolved detection by superconducting nanowires
- URL: http://arxiv.org/abs/2503.17146v1
- Date: Fri, 21 Mar 2025 13:50:47 GMT
- Title: Jitter in photon-number-resolved detection by superconducting nanowires
- Authors: Mariia Sidorova, Timon Schapeler, Alexej D. Semenov, Fabian Schlue, Michael Stefszky, Benjamin Brecht, Christine Silberhorn, Tim J. Bartley,
- Abstract summary: We analyze the physics of multi-photon absorption in superconducting nanowire single-photon detectors (SNSPDs)<n>Our model provides an excellent description of the arrival-time histogram of a commercial SNSPD across several orders of magnitude.<n>Our findings have important implications for photon-number-resolving detector design, as well as applications requiring low jitter.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By analyzing the physics of multi-photon absorption in superconducting nanowire single-photon detectors (SNSPDs), we identify physical components of jitter. From this, we formulate a quantitative physical model of the multi-photon detector response which combines local detection mechanism and local fluctuations (hotspot formation and intrinsic jitter) with thermoelectric dynamics of resistive domains. Our model provides an excellent description of the arrival-time histogram of a commercial SNSPD across several orders of magnitude, both in arrival-time probability and across mean photon number. This is achieved with just three fitting parameters: the scaling of the mean arrival time of voltage response pulses, as well as the Gaussian and exponential jitter components. Our findings have important implications for photon-number-resolving detector design, as well as applications requiring low jitter such as light detection and ranging (LIDAR).
Related papers
- How well can superconducting nanowire single-photon detectors resolve
photon number? [0.7528462379265576]
We investigate the photon-number-resolving capability of superconducting nanowire single-photon detector (SNSPD)
We show unambiguous discrimination between one- and two-photon events, as well as partial resolution up to five photons.
arXiv Detail & Related papers (2023-10-19T05:11:00Z) - Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - High-efficiency and fast photon-number resolving parallel
superconducting nanowire single-photon detector [0.0]
Single-photon detectors are an enabling technology in many areas such as photonic quantum computing, non-classical light source characterisation and quantum imaging.
Here, we demonstrate high-efficiency PNR detectors using a parallel superconducting nanowire single-photon detector (P-SNSPD) architecture that does not suffer from crosstalk between the pixels and that is free of latching.
arXiv Detail & Related papers (2022-07-29T08:15:46Z) - Full counting statistics of the photocurrent through a double quantum
dot embedded in a driven microwave resonator [0.0]
Detection of single, itinerant microwave photons is an important functionality for emerging quantum technology applications.
It was demonstrated that a double quantum dot (DQD) coupled to a microwave resonator can act as an efficient and continuous photodetector.
Here we theoretically investigate, in the same system, the fluctuations of the photocurrent through the DQD for a coherent microwave drive of the resonator.
arXiv Detail & Related papers (2022-07-14T14:17:30Z) - Photon detection probability prediction using one-dimensional generative
neural network [62.997667081978825]
We propose a one-dimensional generative model which efficiently generates features using an OuterProduct-layer.
This model bypasses photon transport simulation and predicts the number of photons detected by particular photon detectors at the same level of detail as theGeant4simulation.
This generative model can be used to quickly predict photon detection probability in huge liquid argon detectors like ProtoDUNE or DUNE.
arXiv Detail & Related papers (2021-09-11T01:43:12Z) - Quantum detector tomography of a high dynamic-range superconducting
nanowire single-photon detector [0.0]
We demonstrate and verify quantum detector tomography of a superconducting nanowire single-photon detector (SNSPD) in a multiplexing scheme.
We reconstruct the positive operator valued measure (POVM) of this device in the low photon-number regime, and use the extracted parameters to show the POVMs.
Our work shows that a reliable quantum description of large-scale SNSPD devices is possible, and should be applicable to other multiplexing configurations.
arXiv Detail & Related papers (2021-02-23T10:17:12Z) - Position Sensitive Response of a Single-Pixel Large-Area SNSPD [58.720142291102135]
Superconducting nanowire single photon detectors (SNSPDs) are typically used as single-mode-fiber-coupled single-pixel detectors.
Large area detectors are increasingly critical for applications ranging from microscopy to free-space quantum communications.
We explore changes in the rising edge of the readout pulse for large-area SNSPDs as a function of the bias current, optical spot size on the detector, and number of photons per pulse.
arXiv Detail & Related papers (2020-05-29T23:33:11Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
We introduce a single-photon detector design operating in the microwave domain based on a weakly nonlinear metamaterial.
We show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths.
In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed.
arXiv Detail & Related papers (2020-05-13T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.