論文の概要: Exploring a Principled Framework for Deep Subspace Clustering
- arxiv url: http://arxiv.org/abs/2503.17288v1
- Date: Fri, 21 Mar 2025 16:38:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:57:52.482354
- Title: Exploring a Principled Framework for Deep Subspace Clustering
- Title(参考訳): ディープサブスペースクラスタリングのための原則的フレームワークの探索
- Authors: Xianghan Meng, Zhiyuan Huang, Wei He, Xianbiao Qi, Rong Xiao, Chun-Guang Li,
- Abstract要約: 深部空間クラスタリング(PRO-DSC)のための原理的fRamewOrkを提案する。
PRO-DSCは構造化表現と自己表現係数を統一的に学習するように設計されている。
我々は、ある条件下での学習された最適表現が部分空間の和集合上にあることを証明した。
- 参考スコア(独自算出の注目度): 9.347670574036563
- License:
- Abstract: Subspace clustering is a classical unsupervised learning task, built on a basic assumption that high-dimensional data can be approximated by a union of subspaces (UoS). Nevertheless, the real-world data are often deviating from the UoS assumption. To address this challenge, state-of-the-art deep subspace clustering algorithms attempt to jointly learn UoS representations and self-expressive coefficients. However, the general framework of the existing algorithms suffers from a catastrophic feature collapse and lacks a theoretical guarantee to learn desired UoS representation. In this paper, we present a Principled fRamewOrk for Deep Subspace Clustering (PRO-DSC), which is designed to learn structured representations and self-expressive coefficients in a unified manner. Specifically, in PRO-DSC, we incorporate an effective regularization on the learned representations into the self-expressive model, prove that the regularized self-expressive model is able to prevent feature space collapse, and demonstrate that the learned optimal representations under certain condition lie on a union of orthogonal subspaces. Moreover, we provide a scalable and efficient approach to implement our PRO-DSC and conduct extensive experiments to verify our theoretical findings and demonstrate the superior performance of our proposed deep subspace clustering approach. The code is available at https://github.com/mengxianghan123/PRO-DSC.
- Abstract(参考訳): サブスペースクラスタリングは古典的な教師なし学習タスクであり、高次元データがサブスペースの結合(UoS)によって近似できるという基本的な仮定に基づいて構築されている。
それでも、現実世界のデータはしばしばUoSの仮定から逸脱している。
この課題に対処するため、最先端の深宇宙クラスタリングアルゴリズムはUoS表現と自己表現係数を共同で学習しようとする。
しかし、既存のアルゴリズムの一般的な枠組みは破滅的な特徴の崩壊に悩まされ、UoS表現を学習する理論的保証が欠如している。
本稿では、構造化表現と自己表現係数を統一的に学習するために設計された、Deep Subspace Clustering (PRO-DSC) のための原則 fRamewOrk を提案する。
具体的には、PR-DSCにおいて、学習された表現の効果的な正規化を自己表現モデルに組み入れ、正規化された自己表現モデルが特徴空間の崩壊を防ぐことができることを証明し、ある条件下での学習された最適表現が直交部分空間の和集合にあることを示す。
さらに,PRO-DSCの実装にスケーラブルで効率的なアプローチを提案し,提案した深部空間クラスタリング手法の優れた性能を実証する広範な実験を行った。
コードはhttps://github.com/mengxianghan123/PRO-DSCで公開されている。
関連論文リスト
- Learning Identifiable Structures Helps Avoid Bias in DNN-based Supervised Causal Learning [56.22841701016295]
Supervised Causal Learning (SCL)はこの分野で新興パラダイムである。
既存のディープニューラルネットワーク(DNN)ベースの手法では、"Node-Edgeアプローチ"が一般的である。
論文 参考訳(メタデータ) (2025-02-15T19:10:35Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Unfolding ADMM for Enhanced Subspace Clustering of Hyperspectral Images [43.152314090830174]
本稿では,スパースサブスペースクラスタリングのためのマルチプライヤの交互方向法(ADMM)に基づく反復解法を展開させることにより,ハイパースペクトル画像(HSI)のための革新的なクラスタリングアーキテクチャを提案する。
提案手法は, 構造保存モジュールの一部として, K近傍近傍のアルゴリズムを用いて, HSIデータの構造特性をよく把握する。
論文 参考訳(メタデータ) (2024-04-10T15:51:46Z) - Preventing Collapse in Contrastive Learning with Orthonormal Prototypes (CLOP) [0.0]
CLOPは、クラス埋め込み間の線形部分空間の形成を促進することにより、神経崩壊を防止するために設計された、新しい半教師付き損失関数である。
CLOPは性能を向上し,学習速度やバッチサイズにまたがる安定性が向上することを示す。
論文 参考訳(メタデータ) (2024-03-27T15:48:16Z) - Structure-Aware Feature Generation for Zero-Shot Learning [108.76968151682621]
潜在空間と生成ネットワークの両方を学習する際の位相構造を考慮し,SA-GANと呼ばれる新しい構造認識特徴生成手法を提案する。
本手法は,未確認クラスの一般化能力を大幅に向上させ,分類性能を向上させる。
論文 参考訳(メタデータ) (2021-08-16T11:52:08Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
Semantic Contrastive Learning (SCL) と呼ばれる新しい変種を紹介します。
従来のコントラスト学習とディープクラスタリングの両方の特徴を探求する。
コントラスト学習と深層クラスタリングの強みを統一的なアプローチで増幅することができる。
論文 参考訳(メタデータ) (2021-03-03T20:20:48Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised Domain Adapt (UDA) は、ターゲットドメイン上のラベルなしデータの予測を行う分類モデルを学ぶことである。
本稿では,対象データの正規化判別クラスタリングと生成クラスタリングを統合する構造的正規化深層クラスタリングのハイブリッドモデルを提案する。
提案するH-SRDCは, インダクティブ設定とトランスダクティブ設定の両方において, 既存の手法よりも優れている。
論文 参考訳(メタデータ) (2020-12-08T08:52:00Z) - A Critique of Self-Expressive Deep Subspace Clustering [23.971512395191308]
サブスペースクラスタリング(Subspace clustering)は、線形サブスペースの和集合上でサポートされているデータをクラスタリングするために設計された、教師なしクラスタリング技術である。
従来の作業では適切に対処されていなかったこのアプローチには,潜在的な欠陥がいくつかあることを示す。
論文 参考訳(メタデータ) (2020-10-08T00:14:59Z) - Deep Metric Structured Learning For Facial Expression Recognition [58.7528672474537]
本研究では,よく定義された構造を持つ組込み部分空間を作成するための深度計量学習モデルを提案する。
これらの部分空間を作成するために、出力空間上にガウス構造を課す新しい損失関数が導入された。
学習した埋め込みは,表現検索や感情認識など,様々な応用に有効であることが実験的に実証された。
論文 参考訳(メタデータ) (2020-01-18T06:23:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。