論文の概要: Calibration Strategies for Robust Causal Estimation: Theoretical and Empirical Insights on Propensity Score Based Estimators
- arxiv url: http://arxiv.org/abs/2503.17290v1
- Date: Fri, 21 Mar 2025 16:41:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:57:48.815617
- Title: Calibration Strategies for Robust Causal Estimation: Theoretical and Empirical Insights on Propensity Score Based Estimators
- Title(参考訳): ロバスト因果推定のための校正方略:確率スコアに基づく推定器の理論的および実証的考察
- Authors: Jan Rabenseifner, Sven Klaassen, Jannis Kueck, Philipp Bach,
- Abstract要約: 推定と校正のためのデータの分割は、確率スコアに基づく推定器の性能に重大な影響を及ぼす。
提案手法は,確率スコア推定のためのキャリブレーション手法の最近の進歩を延長し,挑戦的な設定における確率スコアの堅牢性を向上させる。
- 参考スコア(独自算出の注目度): 0.6562256987706128
- License:
- Abstract: The partitioning of data for estimation and calibration critically impacts the performance of propensity score based estimators like inverse probability weighting (IPW) and double/debiased machine learning (DML) frameworks. We extend recent advances in calibration techniques for propensity score estimation, improving the robustness of propensity scores in challenging settings such as limited overlap, small sample sizes, or unbalanced data. Our contributions are twofold: First, we provide a theoretical analysis of the properties of calibrated estimators in the context of DML. To this end, we refine existing calibration frameworks for propensity score models, with a particular emphasis on the role of sample-splitting schemes in ensuring valid causal inference. Second, through extensive simulations, we show that calibration reduces variance of inverse-based propensity score estimators while also mitigating bias in IPW, even in small-sample regimes. Notably, calibration improves stability for flexible learners (e.g., gradient boosting) while preserving the doubly robust properties of DML. A key insight is that, even when methods perform well without calibration, incorporating a calibration step does not degrade performance, provided that an appropriate sample-splitting approach is chosen.
- Abstract(参考訳): 推定とキャリブレーションのためのデータの分割は、逆確率重み付け(IPW)やダブル/デバイアスド機械学習(DML)フレームワークのような確率スコアに基づく推定器の性能に重大な影響を及ぼす。
本研究は, 相対値推定のためのキャリブレーション手法の最近の進歩を拡張し, 重複の制限, サンプルサイズ, バランスの取れないデータなどの課題において, 相対値のロバスト性を向上させる。
まず、DMLの文脈におけるキャリブレーションされた推定器の特性に関する理論的解析を行う。
この目的のために,提案手法は,正当性スコアモデルのための既存の校正フレームワークを改良し,適切な因果推論を保証するためのサンプル分割方式の役割に特に重点を置いている。
第2に, キャリブレーションにより, 逆ベース確率スコア推定器のばらつきを低減し, マイクロサンプル状態においてもIPWのバイアスを緩和することを示した。
特に、キャリブレーションにより、DMLの2倍の堅牢性を維持しながら、柔軟な学習者(例えば、勾配向上)の安定性が向上する。
重要な洞察は、メソッドがキャリブレーションなしでうまく動作しても、適切なサンプル分割アプローチを選択すると、キャリブレーションステップを組み込むことで性能が低下しないということである。
関連論文リスト
- Optimizing Estimators of Squared Calibration Errors in Classification [2.3020018305241337]
本稿では,2乗キャリブレーション誤差の推定器の比較と最適化を可能にする平均二乗誤差に基づくリスクを提案する。
キャリブレーション誤差を推定する際のトレーニングバリデーションテストパイプラインを提案する。
論文 参考訳(メタデータ) (2024-10-09T15:58:06Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
本稿では,複数サンプルモデル生成系の分布から信頼度を導出する可能性について,一貫性の3つの尺度を用いて検討する。
その結果、一貫性に基づくキャリブレーション手法は、既存のポストホック手法よりも優れていることがわかった。
種々のLMの特性に合わせて,キャリブレーションに適した整合性指標を選択するための実用的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-02-21T16:15:20Z) - From Uncertainty to Precision: Enhancing Binary Classifier Performance
through Calibration [0.3495246564946556]
モデル予測スコアはイベント確率として一般的に見なされるので、キャリブレーションは正確な解釈に不可欠である。
歪み評価のための様々なキャリブレーション尺度の感度を解析し,改良された指標であるローカルスコアを導入する。
これらの知見をランダムフォレスト分類器と回帰器を用いて実世界のシナリオに適用し、キャリブレーションを同時に測定しながら信用デフォルトを予測する。
論文 参考訳(メタデータ) (2024-02-12T16:55:19Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Distribution-Free Model-Agnostic Regression Calibration via
Nonparametric Methods [9.662269016653296]
予測モデルの量子化を特徴付けるための個別キャリブレーションの目的について考察する。
既存の方法はほとんどなく、個々のキャリブレーションに関して統計的な保証が欠如している。
基礎となる予測モデルに依存しない単純な非パラメトリックキャリブレーション法を提案する。
論文 参考訳(メタデータ) (2023-05-20T21:31:51Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
キャリブレーションされたモデルを設計するための最先端のアプローチは、ガウス過程の後方分散を膨らませることに依存している。
本稿では,バニラガウス過程の後方分散にインスパイアされた計算を用いて,予測量子化を生成するキャリブレーション手法を提案する。
我々のアプローチは合理的な仮定の下で校正されたモデルが得られることを示す。
論文 参考訳(メタデータ) (2023-02-23T12:17:36Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
セマンティックセグメンテーションキャリブレーションの問題について検討する。
モデルキャパシティ、作物サイズ、マルチスケールテスト、予測精度はキャリブレーションに影響を及ぼす。
我々は、単純で統一的で効果的なアプローチ、すなわち選択的スケーリングを提案する。
論文 参考訳(メタデータ) (2022-12-22T22:05:16Z) - Variable-Based Calibration for Machine Learning Classifiers [11.9995808096481]
モデルのキャリブレーション特性を特徴付けるために,変数ベースのキャリブレーションの概念を導入する。
ほぼ完全なキャリブレーション誤差を持つモデルでは,データの特徴の関数としてかなりの誤校正が期待できることがわかった。
論文 参考訳(メタデータ) (2022-09-30T00:49:31Z) - Modular Conformal Calibration [80.33410096908872]
回帰における再校正のためのアルゴリズムを多種多様なクラスで導入する。
このフレームワークは、任意の回帰モデルをキャリブレーションされた確率モデルに変換することを可能にする。
我々は17の回帰データセットに対するMCCの実証的研究を行った。
論文 参考訳(メタデータ) (2022-06-23T03:25:23Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Learning Prediction Intervals for Regression: Generalization and
Calibration [12.576284277353606]
不確実性定量のための回帰における予測間隔の生成について検討する。
我々は一般学習理論を用いて、リプシッツ連続性とVC-サブグラフクラスを含む最適性と実現可能性のトレードオフを特徴づける。
我々は既存のベンチマークと比べてテスト性能の点で、区間生成とキャリブレーションアルゴリズムの強みを実証的に示している。
論文 参考訳(メタデータ) (2021-02-26T17:55:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。