Comparative Analysis of Deep Learning Models for Real-World ISP Network Traffic Forecasting
- URL: http://arxiv.org/abs/2503.17410v1
- Date: Thu, 20 Mar 2025 21:04:20 GMT
- Title: Comparative Analysis of Deep Learning Models for Real-World ISP Network Traffic Forecasting
- Authors: Josef Koumar, Timotej Smoleň, Kamil Jeřábek, Tomáš Čejka,
- Abstract summary: This study evaluates state-of-the-art deep learning models on CESNET-TimeSeries24, a recently published, comprehensive real-world network traffic dataset.<n>Our findings highlight the balance between prediction accuracy and computational efficiency across different levels of network granularity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate network traffic forecasting is essential for Internet Service Providers (ISP) to optimize resources, enhance user experience, and mitigate anomalies. This study evaluates state-of-the-art deep learning models on CESNET-TimeSeries24, a recently published, comprehensive real-world network traffic dataset from the ISP network CESNET3 spanning multivariate time series over 40 weeks. Our findings highlight the balance between prediction accuracy and computational efficiency across different levels of network granularity. Additionally, this work establishes a reproducible methodology that facilitates direct comparison of existing approaches, explores their strengths and weaknesses, and provides a benchmark for future studies using this dataset.
Related papers
- Overcoming Data Limitations in Internet Traffic Forecasting: LSTM Models with Transfer Learning and Wavelet Augmentation [1.9662978733004601]
Effective internet traffic prediction in smaller ISP networks is challenged by limited data availability.
This paper explores this issue using transfer learning and data augmentation techniques with two LSTM-based models, LSTMSeq2Seq and LSTMSeq2SeqAtn.
The datasets represent real internet traffic telemetry, offering insights into diverse traffic patterns across different network domains.
arXiv Detail & Related papers (2024-09-20T03:18:20Z) - Cellular Traffic Prediction Using Online Prediction Algorithms [5.416701003120508]
This paper investigates the efficacy of live prediction algorithms for forecasting cellular network traffic in real-time scenarios.
We apply two live prediction algorithms on machine learning models, one of which is recently proposed Fast LiveStream Prediction (FLSP) algorithm.
Our study reveals that the FLSP algorithm can halve the required bandwidth for asynchronous data reporting compared to conventional online prediction algorithms.
arXiv Detail & Related papers (2024-05-08T17:36:14Z) - RACH Traffic Prediction in Massive Machine Type Communications [5.416701003120508]
This paper presents a machine learning-based framework tailored for forecasting bursty traffic in ALOHA networks.
We develop a new low-complexity online prediction algorithm that updates the states of the LSTM network by leveraging frequently collected data from the mMTC network.
We evaluate the performance of the proposed framework in a network with a single base station and thousands of devices organized into groups with distinct traffic-generating characteristics.
arXiv Detail & Related papers (2024-05-08T17:28:07Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Transfer Learning Based Efficient Traffic Prediction with Limited
Training Data [3.689539481706835]
Efficient prediction of internet traffic is an essential part of Self Organizing Network (SON) for ensuring proactive management.
Deep sequence model in network traffic prediction with limited training data has not been studied extensively in the current works.
We investigated and evaluated the performance of the deep transfer learning technique in traffic prediction with inadequate historical data.
arXiv Detail & Related papers (2022-05-09T14:44:39Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
Successful congestion control algorithms can dramatically improve latency and overall network throughput.
Until today, no such learning-based algorithms have shown practical potential in this domain.
We devise an RL-based algorithm with the aim of generalizing to different configurations of real-world datacenter networks.
We show that this scheme outperforms alternative popular RL approaches, and generalizes to scenarios that were not seen during training.
arXiv Detail & Related papers (2021-02-18T13:49:28Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z) - Deep Echo State Networks for Short-Term Traffic Forecasting: Performance
Comparison and Statistical Assessment [8.586891288891263]
In short-term traffic forecasting, the goal is to accurately predict future values of a traffic parameter of interest.
Deep Echo State Networks achieve more accurate traffic forecasts than the rest of considered modeling counterparts.
arXiv Detail & Related papers (2020-04-17T11:07:25Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
This work provides positive evidence using a broad meta-learning framework.
residual connections act as a meta-learning adaptation mechanism.
We show that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining.
arXiv Detail & Related papers (2020-02-07T16:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.