Tec-Habilidad: Skill Classification for Bridging Education and Employment
- URL: http://arxiv.org/abs/2503.03932v1
- Date: Wed, 05 Mar 2025 22:05:42 GMT
- Title: Tec-Habilidad: Skill Classification for Bridging Education and Employment
- Authors: Sabur Butt, Hector G. Ceballos, Diana P. Madera,
- Abstract summary: This paper develops a Spanish language dataset for skill extraction and classification.<n>It provides annotation methodology to distinguish between knowledge, skill, and abilities.<n>It also provides deep learning baselines to advance robust solutions for skill classification.
- Score: 0.7373617024876725
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Job application and assessment processes have evolved significantly in recent years, largely due to advancements in technology and changes in the way companies operate. Skill extraction and classification remain an important component of the modern hiring process as it provides a more objective way to evaluate candidates and automatically align their skills with the job requirements. However, to effectively evaluate the skills, the skill extraction tools must recognize varied mentions of skills on resumes, including direct mentions, implications, synonyms, acronyms, phrases, and proficiency levels, and differentiate between hard and soft skills. While tools like LLMs (Large Model Models) help extract and categorize skills from job applications, there's a lack of comprehensive datasets for evaluating the effectiveness of these models in accurately identifying and classifying skills in Spanish-language job applications. This gap hinders our ability to assess the reliability and precision of the models, which is crucial for ensuring that the selected candidates truly possess the required skills for the job. In this paper, we develop a Spanish language dataset for skill extraction and classification, provide annotation methodology to distinguish between knowledge, skill, and abilities, and provide deep learning baselines to advance robust solutions for skill classification.
Related papers
- Data to Decisions: A Computational Framework to Identify skill requirements from Advertorial Data [1.5621498886998335]
The proposed framework uses techniques of statistical analysis, data mining and natural language processing for the purpose.
The analytical results not only provide useful insights about current state of skill needs in CS&IT industry but also provide practical implications to prospective job applicants, training agencies, and institutions of higher education & professional training.
arXiv Detail & Related papers (2025-03-21T09:49:31Z) - MaestroMotif: Skill Design from Artificial Intelligence Feedback [67.17724089381056]
MaestroMotif is a method for AI-assisted skill design, which yields high-performing and adaptable agents.<n>We present MaestroMotif, a method for AI-assisted skill design, which yields high-performing and adaptable agents.
arXiv Detail & Related papers (2024-12-11T16:59:31Z) - Joint Extraction and Classification of Danish Competences for Job Matching [13.364545674944825]
This work presents the first model that jointly extracts and classifies competence from Danish job postings.
As a single BERT-like architecture for joint extraction and classification, our model is lightweight and efficient at inference.
arXiv Detail & Related papers (2024-10-29T15:00:40Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - Language Guided Skill Discovery [56.84356022198222]
We introduce Language Guided Skill Discovery (LGSD) to maximize semantic diversity between skills.<n>LGSD takes user prompts as input and outputs a set of semantically distinctive skills.<n>We demonstrate that LGSD enables legged robots to visit different user-intended areas on a plane by simply changing the prompt.
arXiv Detail & Related papers (2024-06-07T04:25:38Z) - Hierarchical Classification of Transversal Skills in Job Ads Based on
Sentence Embeddings [0.0]
This paper aims to identify correlations between job ad requirements and skill sets using a deep learning model.
The approach involves data collection, preprocessing, and labeling using ESCO (European Skills, Competences, and Occupations) taxonomy.
arXiv Detail & Related papers (2024-01-10T11:07:32Z) - A Theory for Emergence of Complex Skills in Language Models [56.947273387302616]
A major driver of AI products today is the fact that new skills emerge in language models when their parameter set and training corpora are scaled up.
This paper takes a different approach, analysing emergence using the famous (and empirical) Scaling Laws of LLMs and a simple statistical framework.
arXiv Detail & Related papers (2023-07-29T09:22:54Z) - Extreme Multi-Label Skill Extraction Training using Large Language
Models [19.095612333241288]
We describe a cost-effective approach to generate an accurate, fully synthetic labeled dataset for skill extraction.
Our results show a consistent increase of between 15 to 25 percentage points in textitR-Precision@5 compared to previously published results.
arXiv Detail & Related papers (2023-07-20T11:29:15Z) - Skill-Based Few-Shot Selection for In-Context Learning [123.26522773708683]
Skill-KNN is a skill-based few-shot selection method for in-context learning.
It does not require training or fine-tuning of any models, making it suitable for frequently expanding or changing example banks.
Experimental results across five cross-domain semantic parsing datasets and six backbone models show that Skill-KNN significantly outperforms existing methods.
arXiv Detail & Related papers (2023-05-23T16:28:29Z) - Is it Required? Ranking the Skills Required for a Job-Title [0.0]
We show that important/relevant skills appear more frequently in similar job titles.
We train a Language-agnostic BERT Sentence (LaBSE) model to predict the importance of the skills using weak supervision.
arXiv Detail & Related papers (2022-11-28T10:27:11Z) - Design of Negative Sampling Strategies for Distantly Supervised Skill
Extraction [19.43668931500507]
We propose an end-to-end system for skill extraction, based on distant supervision through literal matching.
We observe that using the ESCO taxonomy to select negative examples from related skills yields the biggest improvements.
We release the benchmark dataset for research purposes to stimulate further research on the task.
arXiv Detail & Related papers (2022-09-13T13:37:06Z) - Modelling Assessment Rubrics through Bayesian Networks: a Pragmatic Approach [40.06500618820166]
This paper presents an approach to deriving a learner model directly from an assessment rubric.
We illustrate how the approach can be applied to automatize the human assessment of an activity developed for testing computational thinking skills.
arXiv Detail & Related papers (2022-09-07T10:09:12Z) - Discovering Generalizable Skills via Automated Generation of Diverse
Tasks [82.16392072211337]
We propose a method to discover generalizable skills via automated generation of a diverse set of tasks.
As opposed to prior work on unsupervised discovery of skills, our method pairs each skill with a unique task produced by a trainable task generator.
A task discriminator defined on the robot behaviors in the generated tasks is jointly trained to estimate the evidence lower bound of the diversity objective.
The learned skills can then be composed in a hierarchical reinforcement learning algorithm to solve unseen target tasks.
arXiv Detail & Related papers (2021-06-26T03:41:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.