論文の概要: From Text to Talent: A Pipeline for Extracting Insights from Candidate Profiles
- arxiv url: http://arxiv.org/abs/2503.17438v1
- Date: Fri, 21 Mar 2025 16:18:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:40:06.309000
- Title: From Text to Talent: A Pipeline for Extracting Insights from Candidate Profiles
- Title(参考訳): テキストからタレントへ: 候補からインサイトを抽出するためのパイプライン
- Authors: Paolo Frazzetto, Muhammad Uzair Ul Haq, Flavia Fabris, Alessandro Sperduti,
- Abstract要約: 本稿では,大規模言語モデルとグラフ類似度を利用した新たなパイプラインを提案する。
提案手法は, 候補プロファイルをマルチモーダルな埋め込みとして表現し, 求人要件と候補属性の微妙な関係を捕捉する。
- 参考スコア(独自算出の注目度): 44.38380596387969
- License:
- Abstract: The recruitment process is undergoing a significant transformation with the increasing use of machine learning and natural language processing techniques. While previous studies have focused on automating candidate selection, the role of multiple vacancies in this process remains understudied. This paper addresses this gap by proposing a novel pipeline that leverages Large Language Models and graph similarity measures to suggest ideal candidates for specific job openings. Our approach represents candidate profiles as multimodal embeddings, enabling the capture of nuanced relationships between job requirements and candidate attributes. The proposed approach has significant implications for the recruitment industry, enabling companies to streamline their hiring processes and identify top talent more efficiently. Our work contributes to the growing body of research on the application of machine learning in human resources, highlighting the potential of LLMs and graph-based methods in revolutionizing the recruitment landscape.
- Abstract(参考訳): 採用プロセスは、機械学習と自然言語処理技術の利用の増加とともに、大きな変革を遂げている。
これまでの研究では、候補選択の自動化に焦点が当てられていたが、このプロセスにおける複数の空洞の役割はまだ検討されていない。
本稿では、大規模言語モデルとグラフ類似度を利用した新たなパイプラインを提案し、特定の求人候補を提案する。
提案手法は, 候補プロファイルをマルチモーダルな埋め込みとして表現し, 求人要件と候補属性の微妙な関係を捕捉する。
提案手法は採用業界に大きな影響を及ぼし、企業は採用プロセスの合理化と人材の特定をより効率的に行うことができる。
我々の研究は、人材への機械学習の適用に関する研究の活発化に寄与し、LLMやグラフベースの手法が採用環境に革命をもたらす可能性を浮き彫りにしている。
関連論文リスト
- Forecasting Application Counts in Talent Acquisition Platforms: Harnessing Multimodal Signals using LMs [5.7623855432001445]
本稿では,採用領域における新たな課題,すなわちアプリケーション数予測について論じる。
本稿では,既存の自己回帰型時系列予測手法が,この課題に対して不十分であることを示す。
簡単なエンコーダを用いて,様々なモダリティの求人メタデータを融合したマルチモーダルLMモデルを提案する。
論文 参考訳(メタデータ) (2024-11-19T01:18:32Z) - Pointwise Mutual Information as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
文脈と問合せの間のポイントワイドな相互情報は,言語モデルの性能向上に有効な指標であることを示す。
本稿では,文書と質問のポイントワイドな相互情報を利用する2つの手法を提案する。
論文 参考訳(メタデータ) (2024-11-12T13:14:09Z) - Facilitating Multi-Role and Multi-Behavior Collaboration of Large Language Models for Online Job Seeking and Recruiting [51.54907796704785]
既存の手法は履歴書とジョブ記述の潜在意味論をモデル化し、それらの間に一致する関数を学習することに依存している。
大規模言語モデル (LLM) の強力なロールプレイング能力に触発されて, LLM によるインタビュアーと候補者のモックインタビュープロセスを導入することを提案する。
そこで我々は,モックインタビュー生成とハンドシェイクプロトコルにおける双方向評価という2つのモジュールにパーソナライズされたマッチングプロセスを分割する,新しいフレームワークであるMockLLMを提案する。
論文 参考訳(メタデータ) (2024-05-28T12:23:16Z) - Computational Job Market Analysis with Natural Language Processing [5.117211717291377]
本論文は,業務記述から関連情報を抽出する自然言語処理(NLP)技術について考察する。
問題の枠組みを定め,注釈付きデータを取得し,抽出手法を導入する。
私たちのコントリビューションには、ジョブ記述データセット、非識別データセット、効率的なモデルトレーニングのための新しいアクティブラーニングアルゴリズムが含まれています。
論文 参考訳(メタデータ) (2024-04-29T14:52:38Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
このプロジェクトは、高度自然言語処理(NLP)技術により、オンラインC2Cマーケットプレースにおける人身売買の急激な問題に取り組む。
我々は、最小限の監督で擬似ラベル付きデータセットを生成する新しい手法を導入し、最先端のNLPモデルをトレーニングするための豊富なリソースとして機能する。
重要な貢献は、Integrated Gradientsを使った解釈可能性フレームワークの実装であり、法執行にとって重要な説明可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-11-22T02:45:01Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - BAD: BiAs Detection for Large Language Models in the context of
candidate screening [6.47452771256903]
本研究の目的は、ChatGPTや他のOpenAI LLMにおける社会的偏見の事例を候補検定の文脈で定量化することである。
これらのモデルの使用が、採用プロセスにおける既存のバイアスや不平等を持続させる方法を示します。
論文 参考訳(メタデータ) (2023-05-17T17:47:31Z) - Just Tell Me: Prompt Engineering in Business Process Management [63.08166397142146]
GPT-3や他の言語モデル(LM)は、様々な自然言語処理(NLP)タスクに効果的に対処できる。
私たちは、迅速なエンジニアリングは、BPM研究にLMの能力をもたらすことができると論じています。
論文 参考訳(メタデータ) (2023-04-14T14:55:19Z) - Toward a traceable, explainable, and fairJD/Resume recommendation system [10.820022470618234]
自動採用システムの開発は今でも大きな課題の1つだ。
我々の目的は、JD/Resumeマッチングプロセスを強化するために、現代言語モデルと知識ベースとデータセットを組み合わせる方法を探ることである。
論文 参考訳(メタデータ) (2022-02-02T18:17:05Z) - Analysis & Shortcomings of E-Recruitment Systems: Towards a
Semantics-based Approach Addressing Knowledge Incompleteness and Limited
Domain Coverage [0.0]
インターネットの急速な発展により、e-recruitmentと人的資源管理の新しい手法が導入された。
求職者の履歴書や求職のスキルを正確に検出し、抽出する能力格差は、依然としてe-recruitmentシステムにとって大きな障害となっている。
複数の協調的セマンティックリソースを利用することで、現在の欠点に対処するe-recruitmentフレームワークについて詳述する。
論文 参考訳(メタデータ) (2020-04-25T01:25:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。