論文の概要: AI Hiring with LLMs: A Context-Aware and Explainable Multi-Agent Framework for Resume Screening
- arxiv url: http://arxiv.org/abs/2504.02870v1
- Date: Tue, 01 Apr 2025 12:56:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-15 01:07:49.109086
- Title: AI Hiring with LLMs: A Context-Aware and Explainable Multi-Agent Framework for Resume Screening
- Title(参考訳): LLMによるAI採用 - コンテキスト認識と説明可能なマルチエージェントフレームワーク
- Authors: Frank P. -W. Lo, Jianing Qiu, Zeyu Wang, Haibao Yu, Yeming Chen, Gao Zhang, Benny Lo,
- Abstract要約: 大規模言語モデル(LLM)を用いたスクリーニング再開のためのマルチエージェントフレームワークを提案する。
フレームワークは、履歴抽出器、評価器、要約器、スコアフォーマッターを含む4つのコアエージェントから構成される。
この動的適応は、パーソナライズされた採用を可能にし、AI自動化と人材獲得のギャップを埋める。
- 参考スコア(独自算出の注目度): 12.845918958645676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Resume screening is a critical yet time-intensive process in talent acquisition, requiring recruiters to analyze vast volume of job applications while remaining objective, accurate, and fair. With the advancements in Large Language Models (LLMs), their reasoning capabilities and extensive knowledge bases demonstrate new opportunities to streamline and automate recruitment workflows. In this work, we propose a multi-agent framework for resume screening using LLMs to systematically process and evaluate resumes. The framework consists of four core agents, including a resume extractor, an evaluator, a summarizer, and a score formatter. To enhance the contextual relevance of candidate assessments, we integrate Retrieval-Augmented Generation (RAG) within the resume evaluator, allowing incorporation of external knowledge sources, such as industry-specific expertise, professional certifications, university rankings, and company-specific hiring criteria. This dynamic adaptation enables personalized recruitment, bridging the gap between AI automation and talent acquisition. We assess the effectiveness of our approach by comparing AI-generated scores with ratings provided by HR professionals on a dataset of anonymized online resumes. The findings highlight the potential of multi-agent RAG-LLM systems in automating resume screening, enabling more efficient and scalable hiring workflows.
- Abstract(参考訳): 求職者は、客観的、正確、公正なまま、大量の求職者を分析しなければならない。
LLM(Large Language Models)の進歩により、彼らの推論能力と広範な知識基盤は、採用ワークフローの合理化と自動化の新たな機会を示しています。
本研究では,LLMを用いて履歴書を体系的に処理し,評価するマルチエージェント・フレームワークを提案する。
フレームワークは、履歴抽出器、評価器、要約器、スコアフォーマッターを含む4つのコアエージェントから構成される。
候補評価の文脈的関連性を高めるため、リトリーバル強化世代(RAG)を履歴評価装置に統合し、業界固有の専門知識、専門的認定、大学ランキング、企業固有の採用基準などの外部知識ソースを組み込む。
この動的適応は、パーソナライズされた採用を可能にし、AI自動化と人材獲得のギャップを埋める。
我々は、匿名化されたオンライン履歴書のデータセット上で、AI生成スコアと人事専門家のレーティングを比較して、このアプローチの有効性を評価する。
この結果は、履歴チェックを自動化するマルチエージェントRAG-LLMシステムの可能性を強調し、より効率的でスケーラブルな採用ワークフローを実現する。
関連論文リスト
- From Text to Talent: A Pipeline for Extracting Insights from Candidate Profiles [44.38380596387969]
本稿では,大規模言語モデルとグラフ類似度を利用した新たなパイプラインを提案する。
提案手法は, 候補プロファイルをマルチモーダルな埋め込みとして表現し, 求人要件と候補属性の微妙な関係を捕捉する。
論文 参考訳(メタデータ) (2025-03-21T16:18:44Z) - Turning Conversations into Workflows: A Framework to Extract and Evaluate Dialog Workflows for Service AI Agents [65.36060818857109]
本稿では,過去の対話から対話を抽出し,評価するための新しい枠組みを提案する。
抽出プロセスは,(1)重要な手続き的要素に基づいて関連する会話を選択するための検索ステップ,(2)質問応答に基づくチェーン・オブ・シークレット(QA-CoT)プロンプトを用いた構造化ワークフロー生成プロセスの2つの主要な段階から構成される。
論文 参考訳(メタデータ) (2025-02-24T16:55:15Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
複数面シナリオと複雑なグラフワークフロー構造を備えた統合ワークフロー生成ベンチマークであるWorfBenchを紹介する。
また,サブシーケンスとサブグラフマッチングアルゴリズムを利用したシステム評価プロトコルWorfEvalを提案する。
我々は、生成されたタスクが下流のタスクを強化し、推論中により少ない時間で優れたパフォーマンスを達成することを観察する。
論文 参考訳(メタデータ) (2024-10-10T12:41:19Z) - Assessing the Performance of Human-Capable LLMs -- Are LLMs Coming for Your Job? [0.0]
SelfScoreは、ヘルプデスクとプロのコンサルティングタスクにおけるLLM(Large Language Model)の自動エージェントのパフォーマンスを評価するために設計されたベンチマークである。
このベンチマークは、問題の複雑さと応答の助け、スコアリングシステムにおける透明性と単純さの確保に関するエージェントを評価する。
この研究は、特にAI技術が優れている地域では、労働者の移動の可能性への懸念を提起している。
論文 参考訳(メタデータ) (2024-10-05T14:37:35Z) - Facilitating Multi-Role and Multi-Behavior Collaboration of Large Language Models for Online Job Seeking and Recruiting [51.54907796704785]
既存の手法は履歴書とジョブ記述の潜在意味論をモデル化し、それらの間に一致する関数を学習することに依存している。
大規模言語モデル (LLM) の強力なロールプレイング能力に触発されて, LLM によるインタビュアーと候補者のモックインタビュープロセスを導入することを提案する。
そこで我々は,モックインタビュー生成とハンドシェイクプロトコルにおける双方向評価という2つのモジュールにパーソナライズされたマッチングプロセスを分割する,新しいフレームワークであるMockLLMを提案する。
論文 参考訳(メタデータ) (2024-05-28T12:23:16Z) - WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks? [83.19032025950986]
本稿では,Webブラウザを介してソフトウェアと対話する大規模言語モデルベースエージェントについて検討する。
WorkArenaは、広く使用されているServiceNowプラットフォームに基づく33のタスクのベンチマークである。
BrowserGymは、そのようなエージェントの設計と評価のための環境である。
論文 参考訳(メタデータ) (2024-03-12T14:58:45Z) - Application of LLM Agents in Recruitment: A Novel Framework for Resume Screening [0.0]
本稿では,新しいLarge Language Models (LLM) ベースのエージェントフレームワークについて紹介する。
我々のフレームワークは、大規模なデータセットから各履歴を効率的に要約し、評価する能力において、異なる。
その結果,自動再試行フレームワークは従来の手作業よりも11倍高速であることがわかった。
論文 参考訳(メタデータ) (2024-01-16T12:30:56Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
われわれはChatEvalと呼ばれるマルチエージェントの審判チームを構築し、異なるモデルから生成された応答の品質を自律的に議論し評価する。
分析の結果,ChatEvalは単なるテキストスコアリングを超越し,信頼性評価のための人間模倣評価プロセスを提供することがわかった。
論文 参考訳(メタデータ) (2023-08-14T15:13:04Z) - Design of Negative Sampling Strategies for Distantly Supervised Skill
Extraction [19.43668931500507]
本稿では,リテラルマッチングによる遠隔監視に基づく,スキル抽出のためのエンドツーエンドシステムを提案する。
ESCO分類を用いて、関連するスキルからネガティブな例を選択することで、最大の改善が得られます。
我々は,タスクのさらなる研究を促進するために,研究目的のベンチマークデータセットをリリースする。
論文 参考訳(メタデータ) (2022-09-13T13:37:06Z) - Toward a traceable, explainable, and fairJD/Resume recommendation system [10.820022470618234]
自動採用システムの開発は今でも大きな課題の1つだ。
我々の目的は、JD/Resumeマッチングプロセスを強化するために、現代言語モデルと知識ベースとデータセットを組み合わせる方法を探ることである。
論文 参考訳(メタデータ) (2022-02-02T18:17:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。