論文の概要: Bayesian generative models can flag performance loss, bias, and out-of-distribution image content
- arxiv url: http://arxiv.org/abs/2503.17477v1
- Date: Fri, 21 Mar 2025 18:45:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:39:51.015229
- Title: Bayesian generative models can flag performance loss, bias, and out-of-distribution image content
- Title(参考訳): ベイズ生成モデルは、性能損失、偏り、分布外画像内容にフラグを与える
- Authors: Miguel López-Pérez, Marco Miani, Valery Naranjo, Søren Hauberg, Aasa Feragen,
- Abstract要約: 生成モデルは、異常検出、特徴抽出、データの可視化、画像生成などの医療画像タスクに人気がある。
ディープラーニングモデルによってパラメータ化されているため、分散シフトに敏感であり、アウト・オブ・ディストリビューションデータに適用しても信頼できないことが多い。
我々は,インク,定規,パッチなどの分布外画像コンテンツを検出する画素ワイド不確実性を示す。
- 参考スコア(独自算出の注目度): 15.835055687646507
- License:
- Abstract: Generative models are popular for medical imaging tasks such as anomaly detection, feature extraction, data visualization, or image generation. Since they are parameterized by deep learning models, they are often sensitive to distribution shifts and unreliable when applied to out-of-distribution data, creating a risk of, e.g. underrepresentation bias. This behavior can be flagged using uncertainty quantification methods for generative models, but their availability remains limited. We propose SLUG: A new UQ method for VAEs that combines recent advances in Laplace approximations with stochastic trace estimators to scale gracefully with image dimensionality. We show that our UQ score -- unlike the VAE's encoder variances -- correlates strongly with reconstruction error and racial underrepresentation bias for dermatological images. We also show how pixel-wise uncertainty can detect out-of-distribution image content such as ink, rulers, and patches, which is known to induce learning shortcuts in predictive models.
- Abstract(参考訳): 生成モデルは、異常検出、特徴抽出、データの可視化、画像生成などの医療画像タスクに人気がある。
それらはディープラーニングモデルによってパラメータ化されているため、分散シフトに敏感であり、アウト・オブ・ディストリビューションデータに適用した場合は信頼できないことが多い。
この振る舞いは、生成モデルに対する不確実な定量化法を用いてフラグ付けすることができるが、その可用性は限られている。
本稿では,最近のラプラス近似の進歩と確率的トレース推定器を併用して,画像次元を優雅に拡張する新しいVAEUQ法を提案する。
VAEのエンコーダのばらつきとは異なり、我々のUQスコアは、皮膚画像の再構成エラーと人種的低表現バイアスと強く相関していることが示される。
また,インク,定規,パッチなど,予測モデルにおける学習ショートカットを誘導することで知られる,分布外画像の内容を検出するための画素ワイド不確実性についても示す。
関連論文リスト
- Detecting Discrepancies Between AI-Generated and Natural Images Using Uncertainty [91.64626435585643]
本稿では,誤用と関連するリスクを軽減するために,予測不確実性を利用してAI生成画像を検出する新しい手法を提案する。
この動機は、自然画像とAI生成画像の分布差に関する基本的な仮定から生じる。
本稿では,AI生成画像の検出スコアとして,大規模事前学習モデルを用いて不確実性を計算することを提案する。
論文 参考訳(メタデータ) (2024-12-08T11:32:25Z) - Model Integrity when Unlearning with T2I Diffusion Models [11.321968363411145]
「忘れ分布からのサンプルを特徴とする特定種類の画像の生成を減らすために、近似機械学習アルゴリズムを提案する。」
次に、既存のベースラインと比較してモデルの整合性を保つ上で優れた効果を示す未学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-04T13:15:28Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
本研究では,非意味情報のバイアスを緩和する効率的な新規性検出手法であるemphProjection Regret(PR)を提案する。
PRは、テスト画像とその拡散ベースの投影の間の知覚距離を計算し、異常を検出する。
拡張実験により、PRは生成モデルに基づく新規性検出手法の先行技術よりも有意なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-12-05T09:44:47Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
微調整の深層学習モデルは、分布内(ID)性能と分布外(OOD)堅牢性の間のトレードオフにつながる可能性がある。
そこで本研究では,マスク付き画像を対物サンプルとして用いて,ファインチューニングモデルのロバスト性を向上させる新しいファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-03-06T11:51:28Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
既存のモデルは、いわゆる"近く分布"設定で失敗するか、劇的な低下に直面します。
本稿では, スコアに基づく生成モデルを用いて, 合成近分布異常データを生成することを提案する。
本手法は,9つのノベルティ検出ベンチマークにおいて,近分布ノベルティ検出を6%改善し,最先端のノベルティ検出を1%から5%パスする。
論文 参考訳(メタデータ) (2022-05-28T02:02:53Z) - Robustness via Uncertainty-aware Cycle Consistency [44.34422859532988]
非ペア画像-画像間の変換とは、対応する画像対を使わずに画像間マッピングを学習することを指す。
既存の手法は、外乱や予測の不確実性にロバスト性を明示的にモデル化することなく決定論的マッピングを学習する。
不確実性を考慮した一般化適応サイクル一貫性(UGAC)に基づく新しい確率的手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T15:33:21Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Implicit field learning for unsupervised anomaly detection in medical
images [0.8122270502556374]
オートデコーダフィードフォワードニューラルネットワークは、組織型のプロキシ上の空間座標と確率の間のマッピングという形で、健康な画像の分布を学習する。
回復画像のモデルにより予測されたボクセル的確率を用いて,異常の局所化を行う。
脳MR画像におけるグリオーマの非教師的局在化の課題に対して,本手法を検証し,他のVAEによる異常検出法と比較した。
論文 参考訳(メタデータ) (2021-06-09T16:57:22Z) - Addressing Variance Shrinkage in Variational Autoencoders using Quantile
Regression [0.0]
可変変分オートエンコーダ (VAE) は, 医用画像の病変検出などの応用において, 異常検出の一般的なモデルとなっている。
本稿では,分散の縮小や過小評価といったよく知られた問題を避けるための代替手法について述べる。
ガウスの仮定の下で推定された定量値を用いて平均値と分散値を計算し、再構成確率を外乱検出や異常検出の原理的アプローチとして計算する。
論文 参考訳(メタデータ) (2020-10-18T17:37:39Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Overinterpretation reveals image classification model pathologies [15.950659318117694]
人気のあるベンチマーク上の畳み込みニューラルネットワーク(CNN)は、意味論的に健全な特徴がなくても高い精度を示すことができるような、厄介な病理を示す。
我々は、CIFAR-10とImageNetでトレーニングされたニューラルネットワークが過剰解釈に悩まされていることを実証した。
これらのパターンは、現実のデプロイメントにおける潜在的なモデルの脆弱性を補うものだが、実際には、ベンチマークの統計的パターンとして、高いテスト精度を達成するのに十分である。
論文 参考訳(メタデータ) (2020-03-19T17:12:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。