A method for determining the Zeeman splitting of a spin qubit via Rabi-driven tunneling
- URL: http://arxiv.org/abs/2503.17481v1
- Date: Fri, 21 Mar 2025 18:50:37 GMT
- Title: A method for determining the Zeeman splitting of a spin qubit via Rabi-driven tunneling
- Authors: Emily Townsend, Joshua Pomeroy, Garnett W. Bryant,
- Abstract summary: We show that resonant driving between the spin up and spin down states of an electron spin-qubit in a quantum dot reduces the occupancy of the dot through leakage to a tuned lead.<n>A nearby charge sensor measuring the occupancy of the dot should be able to detect the narrow resonant condition upon sweeping the driving frequency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that resonant driving between the spin up and spin down states of an electron spin-qubit in a quantum dot reduces the occupancy of the dot through leakage to an appropriately tuned lead. A nearby charge sensor measuring the occupancy of the dot should be able to detect the narrow resonant condition upon sweeping the driving frequency. The presence of interactions with noisy and thermal environments such as leads are an inherent part of creating and manipulating quantum information processing systems. This work is an example of how to incorporate methods from the ``open quantum systems'' perspective into descriptions of quantum devices. The method used here captures the coherent dynamics of the Rabi driving on the spin state of an electron tunneling into a lead, and yields full equations of motion for the interaction-picture density matrix with on- or off-resonance driving
Related papers
- Mach-Zehnder atom interferometry with non-interacting trapped Bose Einstein condensates [0.0]
coherent manipulation of a quantum wave is at the core of quantum sensing.
BECs are the archetype of coherent matter waves, but their manipulation between trapped spatial modes has been limited by strong interparticle collisions.
We operate several Mach-Zehnder interferometers in parallel, canceling common-mode potential instabilities by a differential analysis, thus demonstrating a trapped-atom gradiometer.
arXiv Detail & Related papers (2025-04-24T09:18:01Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Floquet interferometry of a dressed semiconductor quantum dot [0.7852714805965528]
We demonstrate state dressing in a semiconductor quantum dot tunnel-coupled to a charge reservoir.
We develop a theory based on the quantum dynamics of the Floquet ladder.
We show how the technique finds applications in the accurate electrostatic characterisation of semiconductor quantum dots.
arXiv Detail & Related papers (2024-07-19T12:20:30Z) - Periodically driven open quantum systems with vibronic interaction:
Resonance effects and vibrationally mediated decoupling [2.2022550150705804]
We study the interplay between the driving field and vibronic states and its overall influence on the electronic system.
Specifically, we observe an effective decoupling of the electronic system from the periodic driving at specific frequencies.
These insights hold promise for efficient charge current control.
arXiv Detail & Related papers (2023-09-11T16:05:43Z) - Cavity-mediated entanglement of parametrically driven spin qubits via
sidebands [0.0]
We consider a pair of quantum dot-based spin qubits that interact via microwave photons in a superconducting cavity, and that are also parametrically driven by separate external electric fields.
We show that the sidebands generated via the driving fields enable highly tunable qubit-qubit entanglement using only ac control.
arXiv Detail & Related papers (2023-07-12T10:35:43Z) - Observation and manipulation of quantum interference in a
superconducting Kerr parametric oscillator [4.569118826402647]
We report a direct observation of quantum interference induced by quantum tunneling in a superconducting circuit through Wigner tomography.
We experimentally elucidate all essential properties of this quantum interference, such as mapping from Fock states to cat states, a temporal oscillation due to the pump detuning, as well as its characteristic Rabi oscillations and Ramsey fringes.
arXiv Detail & Related papers (2023-06-21T14:27:42Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Flux noise in disordered spin systems [0.0]
Impurity spins randomly distributed at the surfaces and interfaces of superconducting wires are known to cause flux noise.
We propose an intermediate "second principles" method to describe general spin dissipation and flux noise in the quantum regime.
arXiv Detail & Related papers (2022-07-20T16:53:01Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.