論文の概要: Splat-LOAM: Gaussian Splatting LiDAR Odometry and Mapping
- arxiv url: http://arxiv.org/abs/2503.17491v1
- Date: Fri, 21 Mar 2025 19:00:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:34:24.412755
- Title: Splat-LOAM: Gaussian Splatting LiDAR Odometry and Mapping
- Title(参考訳): Splat-LOAM:Gaussian Splatting LiDAR Odometry and Mapping
- Authors: Emanuele Giacomini, Luca Di Giammarino, Lorenzo De Rebotti, Giorgio Grisetti, Martin R. Oswald,
- Abstract要約: 我々は、新しいLiDARオドメトリーとマッピングパイプラインを開発するために、ガウススプラッティング法の最近の進歩の上に構築する。
提案手法は現在の登録性能と一致し,最小限のGPU要求でタスクをマッピングするためのSOTA結果が得られた。
- 参考スコア(独自算出の注目度): 13.068061145084707
- License:
- Abstract: LiDARs provide accurate geometric measurements, making them valuable for ego-motion estimation and reconstruction tasks. Although its success, managing an accurate and lightweight representation of the environment still poses challenges. Both classic and NeRF-based solutions have to trade off accuracy over memory and processing times. In this work, we build on recent advancements in Gaussian Splatting methods to develop a novel LiDAR odometry and mapping pipeline that exclusively relies on Gaussian primitives for its scene representation. Leveraging spherical projection, we drive the refinement of the primitives uniquely from LiDAR measurements. Experiments show that our approach matches the current registration performance, while achieving SOTA results for mapping tasks with minimal GPU requirements. This efficiency makes it a strong candidate for further exploration and potential adoption in real-time robotics estimation tasks.
- Abstract(参考訳): LiDARは正確な幾何学的計測を提供し、エゴモーション推定や再構成作業に有用である。
その成功にもかかわらず、環境の正確で軽量な表現の管理には依然として課題がある。
古典的およびNeRFベースのソリューションは、メモリと処理時間で精度をトレードオフする必要がある。
本研究は,ガウス・スプティング手法の最近の進歩に基づいて,ガウス・プリミティブをシーン表現にのみ依存する新しいLiDARオドメトリー・マッピング・パイプラインを開発した。
球面投影を活用すれば、LiDAR測定からプリミティブの精製を独自に行うことができる。
実験により,本手法は現在の登録性能と一致し,最小限のGPU要件でマッピングタスクのSOTA結果が得られた。
この効率性により、リアルタイムロボティクス推定タスクにおけるさらなる探索と潜在的な採用の候補となる。
関連論文リスト
- LiDAR-RT: Gaussian-based Ray Tracing for Dynamic LiDAR Re-simulation [31.79143254487969]
LiDAR-RTは、リアルタイムで物理的に正確なLiDARの再シミュレーションをサポートする新しいフレームワークである。
私たちの主な貢献は、効率的で効果的なレンダリングパイプラインの開発です。
我々のフレームワークは、フレキシブルなシーン編集操作と様々なセンサー構成でリアルなレンダリングをサポートしています。
論文 参考訳(メタデータ) (2024-12-19T18:58:36Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
都市景観におけるLiDARスキャンをリアルタイムかつ高忠実に再現するLiDAR-GSを提案する。
この手法は,公開可能な大規模シーンデータセットのレンダリングフレームレートと品質の両面において,最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-10-07T15:07:56Z) - R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction [53.19869886963333]
3次元ガウススプラッティング(3DGS)は画像のレンダリングと表面再構成において有望な結果を示した。
本稿では,Sparse-viewトモグラフィ再構成のための3DGSベースのフレームワークであるR2$-Gaussianを紹介する。
論文 参考訳(メタデータ) (2024-05-31T08:39:02Z) - NeRF-LOAM: Neural Implicit Representation for Large-Scale Incremental
LiDAR Odometry and Mapping [14.433784957457632]
ニューラルドメトリー,ニューラルマッピング,メッシュ再構成の3つのモジュールからなる新しいNeRF-LOAMを提案する。
提案手法は,LiDARデータを用いた大規模環境において,最先端のオドメトリーとマッピング性能を実現するとともに,強力な一般化を実現する。
論文 参考訳(メタデータ) (2023-03-19T16:40:36Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - Stress-Testing LiDAR Registration [52.24383388306149]
本稿では,LiDARデータセットからフレームペアの挑戦的集合である平衡登録集合を選択する手法を提案する。
おそらく予想外のことに、最も高速かつ同時に正確なアプローチは、先進RANSACのバージョンであることがわかった。
論文 参考訳(メタデータ) (2022-04-16T05:10:55Z) - MEST: Accurate and Fast Memory-Economic Sparse Training Framework on the
Edge [72.16021611888165]
本稿では,エッジデバイス上での高精度かつ高速な実行を目的とした,メモリ・エコノミクス・スパース・トレーニング(MEST)フレームワークを提案する。
提案されているMESTフレームワークは、Elastic Mutation (EM)とSoft Memory Bound (&S)による拡張で構成されている。
以上の結果から,スペーサマスクの動的探索においても,忘れられない例をその場で特定できることが示唆された。
論文 参考訳(メタデータ) (2021-10-26T21:15:17Z) - Efficient LiDAR Odometry for Autonomous Driving [16.22522474028277]
LiDARオドメトリーは、自律ナビゲーションの自己局在化とマッピングにおいて重要な役割を果たします。
近年の球面範囲画像ベース手法は球面マッピングによる高速近接探索の利点を享受している。
そこで本稿では,非球面画像と鳥眼視図の両面を基盤点に利用して,新しい効率的なLiDARオドメトリー手法を提案する。
論文 参考訳(メタデータ) (2021-04-22T06:05:09Z) - Robust Odometry and Mapping for Multi-LiDAR Systems with Online
Extrinsic Calibration [15.946728828122385]
本稿では,複数のLiDARのロバストかつ同時キャリブレーション,オドメトリー,マッピングを実現するシステムを提案する。
キャリブレーションとSLAMのための10列(全長4.60km)の広範囲な実験により,本手法の性能を検証した。
提案手法は,様々なマルチLiDARセットアップのための完全で堅牢なシステムであることを示す。
論文 参考訳(メタデータ) (2020-10-27T13:51:26Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
本稿では,これら2つの課題に対処するために,自己教師型LiDARオドメトリー法(SelfVoxeLO)を提案する。
具体的には、生のLiDARデータを直接処理する3D畳み込みネットワークを提案し、3D幾何パターンをよりよく符号化する特徴を抽出する。
我々は,KITTIとApollo-SouthBayという2つの大規模データセット上での手法の性能を評価する。
論文 参考訳(メタデータ) (2020-10-19T09:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。