論文の概要: GS-SDF: LiDAR-Augmented Gaussian Splatting and Neural SDF for Geometrically Consistent Rendering and Reconstruction
- arxiv url: http://arxiv.org/abs/2503.10170v1
- Date: Thu, 13 Mar 2025 08:53:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:51:26.702173
- Title: GS-SDF: LiDAR-Augmented Gaussian Splatting and Neural SDF for Geometrically Consistent Rendering and Reconstruction
- Title(参考訳): GS-SDF:LiDAR強化ガウススプラッティングとニューラルSDFによる幾何的整合性レンダリングと再構成
- Authors: Jianheng Liu, Yunfei Wan, Bowen Wang, Chunran Zheng, Jiarong Lin, Fu Zhang,
- Abstract要約: ニューラルサインされた距離場とガウススプラッティングを相乗化する統合LiDAR視覚システムを提案する。
実験では、様々な軌道にまたがる再現精度とレンダリング品質が向上した。
- 参考スコア(独自算出の注目度): 12.293953058837653
- License:
- Abstract: Digital twins are fundamental to the development of autonomous driving and embodied artificial intelligence. However, achieving high-granularity surface reconstruction and high-fidelity rendering remains a challenge. Gaussian splatting offers efficient photorealistic rendering but struggles with geometric inconsistencies due to fragmented primitives and sparse observational data in robotics applications. Existing regularization methods, which rely on render-derived constraints, often fail in complex environments. Moreover, effectively integrating sparse LiDAR data with Gaussian splatting remains challenging. We propose a unified LiDAR-visual system that synergizes Gaussian splatting with a neural signed distance field. The accurate LiDAR point clouds enable a trained neural signed distance field to offer a manifold geometry field, This motivates us to offer an SDF-based Gaussian initialization for physically grounded primitive placement and a comprehensive geometric regularization for geometrically consistent rendering and reconstruction. Experiments demonstrate superior reconstruction accuracy and rendering quality across diverse trajectories. To benefit the community, the codes will be released at https://github.com/hku-mars/GS-SDF.
- Abstract(参考訳): デジタル双生児は、自律運転と具現化された人工知能の開発に基礎を成している。
しかし、高粒度表面の再構成と高忠実なレンダリングを実現することは依然として課題である。
ガウススプラッティングは効率的なフォトリアリスティックレンダリングを提供するが、断片化されたプリミティブと、ロボット工学の応用におけるスパース観測データによる幾何学的不整合に苦慮している。
レンダリングによる制約に依存する既存の正規化メソッドは、複雑な環境では失敗することが多い。
さらに, スパースLiDARデータとガウススプラッティングを効果的に統合することは依然として困難である。
ニューラルサインされた距離場とガウススプラッティングを相乗化する統合LiDAR視覚システムを提案する。
正確なLiDAR点雲は、訓練されたニューラルサインされた距離場により、多様体の幾何学的場を提供することができる。これは、物理的に接地された原始配置のためのSDFベースのガウス初期化と、幾何学的に一貫したレンダリングと再構成のための包括的幾何学的正規化を提供する動機である。
実験では、様々な軌道にまたがる再現精度とレンダリング品質が向上した。
コミュニティの利益を得るために、コードはhttps://github.com/hku-mars/GS-SDFでリリースされる。
関連論文リスト
- G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs [84.07233691641193]
G2SDFはニューラル暗黙の符号付き距離場をガウススプラッティングフレームワークに統合する新しいアプローチである。
G2SDFは, 3DGSの効率を維持しつつ, 従来よりも優れた品質を実現する。
論文 参考訳(メタデータ) (2024-11-25T20:07:07Z) - Quadratic Gaussian Splatting for Efficient and Detailed Surface Reconstruction [7.500927135156425]
Quadratic Gaussian Splatting (QGS) は、円盤を二次曲面に置き換える新しい方法である。
QGSは、通常の一貫性項を導くために空間曲率を描画し、過剰な平滑化を効果的に低減する。
私たちのコードはオープンソースとしてリリースされます。
論文 参考訳(メタデータ) (2024-11-25T13:55:00Z) - Neural Signed Distance Function Inference through Splatting 3D Gaussians Pulled on Zero-Level Set [49.780302894956776]
多視点表面再構成における符号付き距離関数(SDF)の推測は不可欠である。
本稿では3DGSとニューラルSDFの学習をシームレスに融合する手法を提案する。
我々の数値的および視覚的比較は、広く使用されているベンチマークの最先端結果よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-10-18T05:48:06Z) - ES-Gaussian: Gaussian Splatting Mapping via Error Space-Based Gaussian Completion [9.443354889048614]
視覚ベースのマッピングは、粗い点雲のために高品質な3D再構成に苦しむことが多い。
低高度カメラと単線LiDARを用いた高品質な3D再構成システムES-Gaussianを提案する。
論文 参考訳(メタデータ) (2024-10-09T07:09:29Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDARシミュレーションは、自動運転におけるクローズドループシミュレーションにおいて重要な役割を果たす。
都市景観におけるLiDARセンサスキャンをリアルタイムに再現するために,最初のLiDARガウス法であるLiDAR-GSを提案する。
我々の手法は、深度、強度、レイドロップチャンネルを同時に再現することに成功し、公開可能な大規模シーンデータセットにおけるフレームレートと品質の両方のレンダリング結果を達成する。
論文 参考訳(メタデータ) (2024-10-07T15:07:56Z) - GS-Octree: Octree-based 3D Gaussian Splatting for Robust Object-level 3D Reconstruction Under Strong Lighting [4.255847344539736]
我々はオクツリーに基づく暗黙的な表面表現とガウススプラッティングを組み合わせた新しいアプローチを導入する。
SDFによる3次元ガウス分布を利用した本手法は,特に高輝度光による特徴強調画像において,より正確な形状を再構成する。
論文 参考訳(メタデータ) (2024-06-26T09:29:56Z) - Outdoor Scene Extrapolation with Hierarchical Generative Cellular Automata [70.9375320609781]
我々は,自律走行車(AV)で多量に捕獲された大規模LiDARスキャンから微細な3次元形状を生成することを目指している。
本稿では,空間的にスケーラブルな3次元生成モデルである階層型生成セルオートマトン (hGCA) を提案する。
論文 参考訳(メタデータ) (2024-06-12T14:56:56Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - 2D Gaussian Splatting for Geometrically Accurate Radiance Fields [50.056790168812114]
3D Gaussian Splatting (3DGS)は近年,高画質の新規ビュー合成と高速レンダリングを実現し,放射界再構成に革命をもたらした。
多視点画像から幾何学的精度の高い放射場をモデル化・再構成するための新しいアプローチである2DGS(2D Gaussian Splatting)を提案する。
競合する外観品質、高速トレーニング速度、リアルタイムレンダリングを維持しつつ、ノイズフリーかつ詳細な幾何学的再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-26T17:21:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。