論文の概要: Large Language Models (LLMs) for Source Code Analysis: applications, models and datasets
- arxiv url: http://arxiv.org/abs/2503.17502v1
- Date: Fri, 21 Mar 2025 19:29:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:40:08.496897
- Title: Large Language Models (LLMs) for Source Code Analysis: applications, models and datasets
- Title(参考訳): ソースコード解析のための大規模言語モデル(LLM):アプリケーション、モデル、データセット
- Authors: Hamed Jelodar, Mohammad Meymani, Roozbeh Razavi-Far,
- Abstract要約: 大規模言語モデル(LLM)やトランスフォーマーベースのアーキテクチャは、ますますソースコード解析に利用されている。
本稿では,3つの重要な側面に焦点をあて,異なるコード解析タスクにおけるLLMの役割について考察する。
- 参考スコア(独自算出の注目度): 3.8740749765622167
- License:
- Abstract: Large language models (LLMs) and transformer-based architectures are increasingly utilized for source code analysis. As software systems grow in complexity, integrating LLMs into code analysis workflows becomes essential for enhancing efficiency, accuracy, and automation. This paper explores the role of LLMs for different code analysis tasks, focusing on three key aspects: 1) what they can analyze and their applications, 2) what models are used and 3) what datasets are used, and the challenges they face. Regarding the goal of this research, we investigate scholarly articles that explore the use of LLMs for source code analysis to uncover research developments, current trends, and the intellectual structure of this emerging field. Additionally, we summarize limitations and highlight essential tools, datasets, and key challenges, which could be valuable for future work.
- Abstract(参考訳): 大規模言語モデル(LLM)やトランスフォーマーベースのアーキテクチャは、ますますソースコード解析に利用されている。
ソフトウェアシステムが複雑さを増すにつれ、LLMをコード分析ワークフローに統合することは、効率性、正確性、自動化を高めるために不可欠である。
本稿では,3つの重要な側面に焦点をあて,異なるコード解析タスクにおけるLLMの役割について考察する。
1) 分析できるものとそのアプリケーション。
2) どのモデルが使われているか
3) どのデータセットが使われているか、そしてそれらが直面する課題。
本研究の目的について,ソースコード解析におけるLLMの利用を探求する学術論文を考察し,研究の展開,現状,この新興分野の知的構造を明らかにする。
さらに、制限を要約し、重要なツール、データセット、そして今後の作業に価値のある重要な課題を強調します。
関連論文リスト
- Analysis on LLMs Performance for Code Summarization [0.0]
大規模言語モデル(LLM)は、コード要約の分野を著しく進歩させてきた。
本研究の目的は,LLaMA-3,Phi-3,Mistral,GemmaなどのオープンソースLLMの比較分析を行うことである。
論文 参考訳(メタデータ) (2024-12-22T17:09:34Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Unveiling the Impact of Coding Data Instruction Fine-Tuning on Large Language Models Reasoning [64.5243480989869]
コーディングデータは、事前訓練中に推論能力を高めることで知られています。
IFTにおける内的推論能力の活性化におけるその役割はいまだ検討されている。
IFT段階におけるLLMの推論能力に及ぼす符号化データの影響について検討する。
論文 参考訳(メタデータ) (2024-05-30T23:20:25Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
本調査は,データアノテーションと合成のための大規模言語モデルの有用性に焦点を当てる。
LLMがアノテートできるデータタイプの詳細な分類、LLM生成アノテーションを利用したモデルの学習戦略のレビュー、データアノテーションと合成にLLMを使用する際の主な課題と制限に関する詳細な議論を含む。
論文 参考訳(メタデータ) (2024-02-21T00:44:04Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z) - LLMs for Science: Usage for Code Generation and Data Analysis [0.07499722271664144]
大規模言語モデル (LLMs) は、今日の作業環境の多くの領域で生産性の向上を図っている。
LLMのポテンシャルが研究の実践においてどのように実現されるのかは、いまだ不明である。
論文 参考訳(メタデータ) (2023-11-28T12:29:33Z) - LLM-in-the-loop: Leveraging Large Language Model for Thematic Analysis [18.775126929754833]
Thematic Analysis (TA)は、多くの分野や分野における定性的データを解析するために広く使われている。
ヒューマンコーダはデータの解釈とコーディングを複数のイテレーションで開発し、より深くする。
In-context Learning (ICL) を用いたTAを実現するための人間-LLM協調フレームワーク(LLM-in-the-loop)を提案する。
論文 参考訳(メタデータ) (2023-10-23T17:05:59Z) - Large Language Models for Code Analysis: Do LLMs Really Do Their Job? [13.48555476110316]
大規模言語モデル(LLM)は、自然言語理解とプログラミングコード処理タスクの領域において大きな可能性を証明している。
本稿では、コード解析タスクの実行におけるLLMの能力を総合的に評価する。
論文 参考訳(メタデータ) (2023-10-18T22:02:43Z) - Towards an Understanding of Large Language Models in Software Engineering Tasks [29.30433406449331]
大規模言語モデル(LLM)は、テキスト生成や推論タスクにおける驚くべきパフォーマンスのために、広く注目を集め、研究している。
コード生成などのソフトウェア工学タスクにおけるLLMの評価と最適化が研究の焦点となっている。
本稿では,LLMとソフトウェア工学を組み合わせた研究・製品について包括的に検討・検討する。
論文 参考訳(メタデータ) (2023-08-22T12:37:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。