論文の概要: Follow-up Question Generation For Enhanced Patient-Provider Conversations
- arxiv url: http://arxiv.org/abs/2503.17509v1
- Date: Fri, 21 Mar 2025 19:40:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:39:23.301989
- Title: Follow-up Question Generation For Enhanced Patient-Provider Conversations
- Title(参考訳): 患者提供者会話強化のためのフォローアップ質問生成
- Authors: Joseph Gatto, Parker Seegmiller, Timothy Burdick, Inas S. Khayal, Sarah DeLozier, Sarah M. Preum,
- Abstract要約: FollowupQは非同期医療会話を強化するための新しいフレームワークである。
FollowupQは、患者メッセージとEHRデータを処理し、パーソナライズされたフォローアップ質問を生成する。
必要なプロバイダのフォローアップ通信を34%削減する。
また、実データと合成データのパフォーマンスも17%向上し、5%向上した。
- 参考スコア(独自算出の注目度): 0.11309478649967242
- License:
- Abstract: Follow-up question generation is an essential feature of dialogue systems as it can reduce conversational ambiguity and enhance modeling complex interactions. Conversational contexts often pose core NLP challenges such as (i) extracting relevant information buried in fragmented data sources, and (ii) modeling parallel thought processes. These two challenges occur frequently in medical dialogue as a doctor asks questions based not only on patient utterances but also their prior EHR data and current diagnostic hypotheses. Asking medical questions in asynchronous conversations compounds these issues as doctors can only rely on static EHR information to motivate follow-up questions. To address these challenges, we introduce FollowupQ, a novel framework for enhancing asynchronous medical conversation. FollowupQ is a multi-agent framework that processes patient messages and EHR data to generate personalized follow-up questions, clarifying patient-reported medical conditions. FollowupQ reduces requisite provider follow-up communications by 34%. It also improves performance by 17% and 5% on real and synthetic data, respectively. We also release the first public dataset of asynchronous medical messages with linked EHR data alongside 2,300 follow-up questions written by clinical experts for the wider NLP research community.
- Abstract(参考訳): フォローアップ質問生成は対話システムの重要な特徴であり、会話のあいまいさを低減し、複雑な相互作用のモデリングを強化することができる。
会話の文脈は、しばしば中核的なNLP課題を引き起こす
一 断片化されたデータソースに埋もれた関連情報を抽出し、
(II)並列思考過程をモデル化すること。
これらの2つの課題は、医師が患者の発話だけでなく、以前のEHRデータや現在の診断仮説に基づいて質問するときに頻繁に起こる。
医学的な質問を非同期会話で求めると、これらの問題が混ざり合い、医師は静的なEHR情報に頼るだけでフォローアップの質問を動機付けることができる。
これらの課題に対処するために、非同期医療会話を強化するための新しいフレームワークであるFollowupQを紹介する。
FollowupQは、患者メッセージとEHRデータを処理してパーソナライズされたフォローアップ質問を生成し、患者が報告した医療状況を明確にするマルチエージェントフレームワークである。
FollowupQは、必要なプロバイダのフォローアップ通信を34%削減する。
また、実データと合成データでそれぞれ17%と5%のパフォーマンスも向上する。
また,NLP研究コミュニティにおける臨床専門家による2,300件のフォローアップ質問とともに,リンクEHRデータを用いた非同期医療メッセージの最初の公開データセットもリリースした。
関連論文リスト
- Give me Some Hard Questions: Synthetic Data Generation for Clinical QA [13.436187152293515]
本稿では,ゼロショット環境での大規模言語モデル(LLM)を用いた臨床QAデータの生成について検討する。
ナイーブなプロンプトが臨床シナリオの複雑さを反映しない簡単な質問をもたらすことがよくあります。
2つの臨床QAデータセットを用いた実験により,本手法はより難解な質問を発生し,ベースライン上での微調整性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-12-05T19:35:41Z) - Can Generative AI Support Patients' & Caregivers' Informational Needs? Towards Task-Centric Evaluation Of AI Systems [0.7124736158080937]
人間の理解と意思決定を中心とする評価パラダイムを開発する。
具体的なタスクにおける人を支援するための生成AIシステムの有用性について検討する。
我々は,放射線技師の反応に対して,最先端の2つの生成AIシステムを評価する。
論文 参考訳(メタデータ) (2024-01-31T23:24:37Z) - Yes, this is what I was looking for! Towards Multi-modal Medical
Consultation Concern Summary Generation [46.42604861624895]
マルチモーダル・メディカル・コンシューム・サマリ・ジェネレーションの新しい課題を提案する。
患者のジェスチャーや表情などの非言語的手がかりは、患者の懸念を正確に識別するのに役立つ。
マルチモーダル・メディカル・コンシューム・サマリー・ジェネレーション・コーパスを構築。
論文 参考訳(メタデータ) (2024-01-10T12:56:47Z) - MedNgage: A Dataset for Understanding Engagement in Patient-Nurse
Conversations [4.847266237348932]
症状を効果的に管理する患者は、医療従事者との会話や介入において、より高いレベルのエンゲージメントを示すことが多い。
AIシステムは、患者と実践者との自然な会話におけるエンゲージメントを理解して、患者のケアにもっと貢献することが不可欠である。
本稿では,がん症状管理に関する患者と看護者の会話をまとめた新しいデータセット(MedNgage)を提案する。
論文 参考訳(メタデータ) (2023-05-31T16:06:07Z) - Generating medically-accurate summaries of patient-provider dialogue: A
multi-stage approach using large language models [6.252236971703546]
効果的な要約は、対話におけるすべての医学的関連情報を一貫性と精度良く捉えることが要求される。
本稿では, 医療会話の要約問題に, タスクを, より小さな対話に基づくタスクに分解することで対処する。
論文 参考訳(メタデータ) (2023-05-10T08:48:53Z) - Q-Pain: A Question Answering Dataset to Measure Social Bias in Pain
Management [5.044336341666555]
痛み管理の文脈におけるQAのバイアスを評価するためのデータセットであるQ-Painを紹介する。
本稿では, 治療決定の際に生じる潜在的なバイアスを測定するための, 実験設計のサンプルを含む, 厳密な新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T21:55:28Z) - Where's the Question? A Multi-channel Deep Convolutional Neural Network
for Question Identification in Textual Data [83.89578557287658]
本稿では,実際の質問を分離する目的で,新しい多チャンネル深層畳み込みニューラルネットワークアーキテクチャであるQuest-CNNを提案する。
提案するニューラルネットワークと他のディープニューラルネットワークの総合的な性能比較分析を行った。
提案したQuest-CNNは、透析ケア設定におけるデータエントリレビュー対話のデータセットと一般的なドメインデータセットの両方において、最高のF1スコアを達成した。
論文 参考訳(メタデータ) (2020-10-15T15:11:22Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
MedDGという12種類の消化器疾患に関連する大規模医用対話データセットを構築し,公開する。
MedDGデータセットに基づく2種類の医療対話タスクを提案する。1つは次のエンティティ予測であり、もう1つは医師の反応生成である。
実験結果から,プレトレイン言語モデルと他のベースラインは,両方のタスクに苦戦し,データセットの性能が劣ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T03:34:33Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - On the Generation of Medical Dialogues for COVID-19 [60.63485429268256]
新型コロナウイルス関連の症状を患ったり、危険因子に晒されたりする人は、医師に相談する必要がある。
医療専門家が不足しているため、多くの人がオンライン相談を受けることができない。
本研究の目的は、新型コロナウイルス関連の相談を提供する医療対話システムの構築である。
論文 参考訳(メタデータ) (2020-05-11T21:23:43Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。