Communities in the Kuramoto Model: Dynamics and Detection via Path Signatures
- URL: http://arxiv.org/abs/2503.17546v2
- Date: Tue, 25 Mar 2025 14:02:42 GMT
- Title: Communities in the Kuramoto Model: Dynamics and Detection via Path Signatures
- Authors: Tâm Johan Nguyên, Darrick Lee, Bernadette Jana Stolz,
- Abstract summary: We propose a mathematical framework that encodes geometric and temporal properties of continuous paths to address this problem.<n>Path signatures provide a reparametrization-invariant characterization of dynamical data.<n>We propose a novel signature-based community detection algorithm, achieving exact recovery of structural communities from observed time series.
- Score: 1.024113475677323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The behavior of multivariate dynamical processes is often governed by underlying structural connections that relate the components of the system. For example, brain activity which is often measured via time series is determined by an underlying structural graph, where nodes represent neurons or brain regions and edges represent cortical connectivity. Existing methods for inferring structural connections from observed dynamics, such as correlation-based or spectral techniques, may fail to fully capture complex relationships in high-dimensional time series in an interpretable way. Here, we propose the use of path signatures a mathematical framework that encodes geometric and temporal properties of continuous paths to address this problem. Path signatures provide a reparametrization-invariant characterization of dynamical data and, in particular, can be used to compute the lead matrix which reveals lead-lag phenomena. We showcase our approach on time series from coupled oscillators in the Kuramoto model defined on a stochastic block model graph, termed the Kuramoto stochastic block model (KSBM). Using mean-field theory and Gaussian approximations, we analytically derive reduced models of KSBM dynamics in different temporal regimes and theoretically characterize the lead matrix in these settings. Leveraging these insights, we propose a novel signature-based community detection algorithm, achieving exact recovery of structural communities from observed time series in multiple KSBM instances. Our results demonstrate that path signatures provide a novel perspective on analyzing complex neural data and other high-dimensional systems, explicitly exploiting temporal functional relationships to infer underlying structure.
Related papers
- SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges [41.955864444491965]
Neuroimaging provides a critical framework for characterizing brain activity by quantifying connectivity patterns and functional architecture across modalities.
Modern machine learning has significantly advanced our understanding of neural processing mechanisms through these datasets.
This review focuses on machine learning approaches for covariance-based neuroimaging data, where often symmetric positive definite (SPD) matrices under full-rank conditions encode inter-channel relationships.
arXiv Detail & Related papers (2025-04-26T10:05:04Z) - Inference of hidden common driver dynamics by anisotropic self-organizing neural networks [0.0]
We introduce a novel approach to infer the underlying dynamics of hidden common drivers.
The inference relies on time-delay embedding, estimation of the intrinsic dimension of the observed systems.
arXiv Detail & Related papers (2025-04-02T15:17:23Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.<n>We train the model using maximum likelihood estimation with Markov chain Monte Carlo.<n> Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Clustering Time-Evolving Networks Using the Spatio-Temporal Graph Laplacian [0.8643517734716606]
We generalize existing spectral algorithms to identify and analyze communities in time-varying graph structures.<n>We show that thetemporal-directed graph Laplacian allows for a clear interpretation of cluster structure evolution over time for directed and undirected clusters.
arXiv Detail & Related papers (2024-07-12T14:31:54Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Causal Temporal Regime Structure Learning [49.77103348208835]
We present CASTOR, a novel method that concurrently learns the Directed Acyclic Graph (DAG) for each regime.<n>We establish the identifiability of the regimes and DAGs within our framework.<n>Experiments show that CASTOR consistently outperforms existing causal discovery models.
arXiv Detail & Related papers (2023-11-02T17:26:49Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - GDBN: a Graph Neural Network Approach to Dynamic Bayesian Network [7.876789380671075]
We propose a graph neural network approach with score-based method aiming at learning a sparse DAG.
We demonstrate methods with graph neural network significantly outperformed other state-of-the-art methods with dynamic bayesian networking inference.
arXiv Detail & Related papers (2023-01-28T02:49:13Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
arXiv Detail & Related papers (2022-06-28T08:11:12Z) - Bayesian Inference of Stochastic Dynamical Networks [0.0]
This paper presents a novel method for learning network topology and internal dynamics.
It is compared with group sparse Bayesian learning (GSBL), BINGO, kernel-based methods, dynGENIE3, GENIE3 and ARNI.
Our method achieves state-of-the-art performance compared with group sparse Bayesian learning (GSBL), BINGO, kernel-based methods, dynGENIE3, GENIE3 and ARNI.
arXiv Detail & Related papers (2022-06-02T03:22:34Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.