論文の概要: Guidance Free Image Editing via Explicit Conditioning
- arxiv url: http://arxiv.org/abs/2503.17593v1
- Date: Sat, 22 Mar 2025 00:44:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:36:58.741674
- Title: Guidance Free Image Editing via Explicit Conditioning
- Title(参考訳): 明示的条件付けによる誘導自由画像編集
- Authors: Mehdi Noroozi, Alberto Gil Ramos, Luca Morreale, Ruchika Chavhan, Malcolm Chadwick, Abhinav Mehrotra, Sourav Bhattacharya,
- Abstract要約: これを実現するために入力モード上の雑音分布の明示的条件付け(EC)を行う。
画像編集タスクの評価を行い,EC が CFG より優れていることを示す。
- 参考スコア(独自算出の注目度): 8.81828807024982
- License:
- Abstract: Current sampling mechanisms for conditional diffusion models rely mainly on Classifier Free Guidance (CFG) to generate high-quality images. However, CFG requires several denoising passes in each time step, e.g., up to three passes in image editing tasks, resulting in excessive computational costs. This paper introduces a novel conditioning technique to ease the computational burden of the well-established guidance techniques, thereby significantly improving the inference time of diffusion models. We present Explicit Conditioning (EC) of the noise distribution on the input modalities to achieve this. Intuitively, we model the noise to guide the conditional diffusion model during the diffusion process. We present evaluations on image editing tasks and demonstrate that EC outperforms CFG in generating diverse high-quality images with significantly reduced computations.
- Abstract(参考訳): 条件拡散モデルの現在のサンプリングメカニズムは主に高品質な画像を生成するために分類自由誘導(CFG)に依存している。
しかし、CFGは各タイムステップで最大3回の画像編集タスクでいくつかの復調パスを必要とするため、計算コストが過大になる。
本稿では,提案手法が確立した指導手法の計算負担を軽減し,拡散モデルの推論時間を大幅に改善する新しい条件付け手法を提案する。
本稿では、入力モードにおける雑音分布の明示的条件付け(EC)を行い、これを実現する。
直感的には,拡散過程における条件拡散モデルを導くためにノイズをモデル化する。
画像編集タスクの評価を行い,EC が CFG より優れていることを示す。
関連論文リスト
- Advancing Diffusion Models: Alias-Free Resampling and Enhanced Rotational Equivariance [0.0]
拡散モデルは、モデルによって引き起こされたアーティファクトと、画像の忠実性に制限された安定性によって、依然として挑戦されている。
拡散モデルのUNetアーキテクチャにエイリアスフリー再サンプリング層を統合することを提案する。
CIFAR-10, MNIST, MNIST-Mなどのベンチマークデータを用いた実験の結果, 画像品質が一貫した向上を示した。
論文 参考訳(メタデータ) (2024-11-14T04:23:28Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
本研究では,操作数を増やすことなく,高い品質と操作率の逆転法を導入し,再現精度を向上する。
我々は,近年の高速化拡散モデルを含む様々なサンプリングアルゴリズムとモデルを用いて,Renoise手法の性能を評価する。
論文 参考訳(メタデータ) (2024-03-21T17:52:08Z) - Compensation Sampling for Improved Convergence in Diffusion Models [12.311434647047427]
拡散モデルは画像生成において顕著な品質を達成するが、コストはかかる。
反復 denoising は高忠実度画像を生成するために多くの時間ステップを必要とする。
対象データの初期的不正確な再構成による復元誤差の蓄積により,復調過程が著しく制限されていることを論じる。
論文 参考訳(メタデータ) (2023-12-11T10:39:01Z) - Image Inpainting via Tractable Steering of Diffusion Models [48.16994134964729]
本稿では,トラクタブル確率モデル(TPM)の制約後部を正確に,かつ効率的に計算する能力を活用することを提案する。
具体的には、確率回路(PC)と呼ばれる表現型TPMのクラスを採用する。
論文 参考訳(メタデータ) (2023-11-28T21:14:02Z) - CoDi: Conditional Diffusion Distillation for Higher-Fidelity and Faster
Image Generation [49.3016007471979]
大規模な生成拡散モデルは、テキスト・ツー・イメージ生成に革命をもたらし、条件付き生成タスクに大きな可能性を秘めている。
しかし、彼らの普及は高い計算コストによって妨げられ、リアルタイムの応用が制限される。
本稿では,事前学習した潜伏拡散モデルに付加的な画像条件入力を適応させるCoDiという新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-02T17:59:18Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
本稿では,ACDMSRと呼ばれる拡散モデルに基づく超解像法を提案する。
提案手法は, 決定論的反復分解過程を通じて超解像を行うために, 標準拡散モデルに適応する。
提案手法は,低解像度画像に対してより視覚的に現実的な表現を生成し,現実的なシナリオにおけるその有効性を強調した。
論文 参考訳(メタデータ) (2023-07-03T06:49:04Z) - Simultaneous Image-to-Zero and Zero-to-Noise: Diffusion Models with Analytical Image Attenuation [53.04220377034574]
高品質(未条件)な画像生成のための前方拡散プロセスに解析的画像減衰プロセスを導入することを提案する。
本手法は,フォワード画像からノイズへのマッピングを,テクスチメジからゼロへのマッピングとテクスティケロ・ツー・ノイズマッピングの同時マッピングとして表現する。
我々は,CIFAR-10やCelebA-HQ-256などの無条件画像生成や,超解像,サリエンシ検出,エッジ検出,画像インペインティングなどの画像条件下での下流処理について実験を行った。
論文 参考訳(メタデータ) (2023-06-23T18:08:00Z) - Conditional Generation from Unconditional Diffusion Models using
Denoiser Representations [94.04631421741986]
本稿では,学習したデノイザネットワークの内部表現を用いて,事前学習した非条件拡散モデルを新しい条件に適用することを提案する。
提案手法により生成した合成画像を用いたTiny ImageNetトレーニングセットの強化により,ResNetベースラインの分類精度が最大8%向上することを示す。
論文 参考訳(メタデータ) (2023-06-02T20:09:57Z) - DuDGAN: Improving Class-Conditional GANs via Dual-Diffusion [2.458437232470188]
GAN(Generative Adversarial Network)を用いたクラス条件画像生成について,様々な手法を用いて検討した。
本稿では,DuDGANと呼ばれる2次元拡散型ノイズ注入法を取り入れたGANを用いたクラス条件画像生成手法を提案する。
提案手法は,画像生成のための現状条件付きGANモデルよりも性能的に優れている。
論文 参考訳(メタデータ) (2023-05-24T07:59:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。