Moiré Superradiance in Cavity Quantum Electrodynamics with Quantum Atom Gas
- URL: http://arxiv.org/abs/2503.17696v2
- Date: Wed, 26 Mar 2025 02:38:37 GMT
- Title: Moiré Superradiance in Cavity Quantum Electrodynamics with Quantum Atom Gas
- Authors: Lu Zhou, Zheng-Chun Li, Keye Zhang, Zhihao Lan, Alessio Celi, Weiping Zhang,
- Abstract summary: We present a scheme demonstrating moir'e effects in a one-dimensional cold atom-cavity coupling system.<n>We derive the cavity field spectrum, connected to the dynamical structure factor, and showcase controlled atomic diffusion.
- Score: 2.984131602667745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a novel platform for exploring exotic quantum phenomena, the moir\'e lattice has garnered significant interest in solid-state physics, photonics, and cold atom physics. While moir\'e lattices in two- and three-dimensional systems have been proposed for neutral cold atoms, the simpler one-dimensional moir\'e effect remains largely unexplored. We present a scheme demonstrating moir\'e effects in a one-dimensional cold atom-cavity coupling system, which resembles a generalized open Dicke model exhibiting superradiant phase transitions. We reveal a strong link between the phase transition critical point and the one-dimensional moir\'e parameter. Additionally, we derive the cavity field spectrum, connected to the dynamical structure factor, and showcase controlled atomic diffusion. This work provides a new route for testing one-dimensional moir\'e effects with cold atoms and open new possibility of moir\'e metrology.
Related papers
- Bosonic Peierls state emerging from the one-dimensional Ising-Kondo interaction [0.6086160084025234]
Peierls transition, a hot topic in condensed matter physics, is usually believed to occur in the one-dimensional fermionic systems.
We show that, by means of perturbation analysis and numerical density-matrix renormalization group method, a bosonic analog of the Peierls state can occur in proper parameters regimes.
arXiv Detail & Related papers (2024-11-25T13:10:53Z) - Manipulating the Dipolar Interactions and Cooperative Effects in
Confined Geometries [0.0]
One promising strategy involves integrating thermal vapors with nanostructures designed to manipulate atomic interactions.
We explore the interactions between atoms in confined dense thermal vapors.
By carefully controlling the saturation of single atoms and the interactions among multiple atoms using nanostructures, it becomes possible to manipulate the effective optical nonlinearity of the entire atomic ensemble.
arXiv Detail & Related papers (2024-01-16T21:10:03Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Quantum Simulation of an Extended Dicke Model with a Magnetic Solid [3.152441795183668]
We show the existence of a novel atomically ordered phase in addition to the superradiant and normal phases.
These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body condensed matter systems.
arXiv Detail & Related papers (2023-02-12T23:55:26Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Collective Radiance of Giant Atoms in Non-Markovian Regime [11.798151369038557]
We investigate the non-Markovian dynamics of two giant artificial atoms interacting with a continuum of bosonic modes in a 1D waveguide.
For certain collective states, the decay rates are found to be far beyond that predicted in the the Dicke model and standard Markovian framework.
The trapped photons/phonons in the BICs can also be re-released conveniently by changing the energy level splitting of giant atoms.
arXiv Detail & Related papers (2022-05-23T01:14:56Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Producing and storing spin-squeezed states and
Greenberger-Horne-Zeilinger states in a one-dimensional optical lattice [0.0]
We study the generation and storage of spin squeezed states, as well as more entangled states up to macroscopic superpositions, in a system composed of a few ultra-cold atoms trapped in a one-dimensional optical lattice.
The system, initially in the superfluid phase with each atom in a superposition of two internal states, is first dynamically entangled by atom-atom interactions then adiabatically brought to the Mott-insulator phase with one atom per site where the quantum correlations are stored.
arXiv Detail & Related papers (2020-05-06T09:22:34Z) - Exotic photonic molecules via Lennard-Jones-like potentials [48.7576911714538]
We show a novel Lennard-Jones-like potential between photons coupled to the Rydberg states via electromagnetically induced transparency (EIT)
This potential is achieved by tuning Rydberg states to a F"orster resonance with other Rydberg states.
For a few-body problem, the multi-body interactions have a significant impact on the geometry of the molecular ground state.
arXiv Detail & Related papers (2020-03-17T18:00:01Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.