論文の概要: MAMAT: 3D Mamba-Based Atmospheric Turbulence Removal and its Object Detection Capability
- arxiv url: http://arxiv.org/abs/2503.17700v1
- Date: Sat, 22 Mar 2025 08:48:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:36:49.353702
- Title: MAMAT: 3D Mamba-Based Atmospheric Turbulence Removal and its Object Detection Capability
- Title(参考訳): MAMAT:3次元マンバ型大気乱流除去とその物体検出能力
- Authors: Paul Hill, Zhiming Liu, Nantheera Anantrasirichai,
- Abstract要約: 我々は,新しいマンバ型3次元マンバ型大気乱流除去法(MAMAT)を導入する。
第1モジュールは変形可能な3D畳み込みを利用して非剛体登録を行い、空間シフトを最小限に抑え、第2モジュールはコントラストとディテールを高める。
実験では、MAMATは最先端の学習ベースの手法より優れており、視覚的品質が最大3%向上し、物体検出が15%向上している。
- 参考スコア(独自算出の注目度): 4.233977712300247
- License:
- Abstract: Restoration and enhancement are essential for improving the quality of videos captured under atmospheric turbulence conditions, aiding visualization, object detection, classification, and tracking in surveillance systems. In this paper, we introduce a novel Mamba-based method, the 3D Mamba-Based Atmospheric Turbulence Removal (MAMAT), which employs a dual-module strategy to mitigate these distortions. The first module utilizes deformable 3D convolutions for non-rigid registration to minimize spatial shifts, while the second module enhances contrast and detail. Leveraging the advanced capabilities of the 3D Mamba architecture, experimental results demonstrate that MAMAT outperforms state-of-the-art learning-based methods, achieving up to a 3\% improvement in visual quality and a 15\% boost in object detection. It not only enhances visualization but also significantly improves object detection accuracy, bridging the gap between visual restoration and the effectiveness of surveillance applications.
- Abstract(参考訳): 回復と強化は、大気乱流下で撮影されたビデオの品質向上、可視化、物体検出、分類、監視システムにおける追跡に不可欠である。
本稿では, この歪みを軽減するために, 二重加群戦略を用いる新しいマンバ法である3次元マンバ型大気乱流除去法(MAMAT)を提案する。
第1モジュールは変形可能な3D畳み込みを利用して非剛体登録を行い、空間シフトを最小限に抑え、第2モジュールはコントラストとディテールを高める。
3D Mambaアーキテクチャの高度な機能を活用し、実験結果により、MAMATは最先端の学習ベースの手法より優れており、視覚的品質が最大3倍向上し、オブジェクト検出が15倍向上することが示された。
可視化を向上するだけでなく、オブジェクト検出の精度を大幅に向上させ、視覚回復と監視アプリケーションの有効性のギャップを埋める。
関連論文リスト
- Efficient Feature Aggregation and Scale-Aware Regression for Monocular 3D Object Detection [40.14197775884804]
MonoASRHは、効率的なハイブリッド特徴集約モジュール(EH-FAM)と適応スケール対応3D回帰ヘッド(ASRH)で構成される新しいモノクル3D検出フレームワークである。
EH-FAMは、小規模オブジェクトのセマンティックな特徴を抽出するために、グローバルな受容領域を持つマルチヘッドアテンションを用いる。
ASRHは2次元境界ボックス次元を符号化し、EH-FAMで集約された意味的特徴とスケール特徴を融合する。
論文 参考訳(メタデータ) (2024-11-05T02:33:25Z) - Unleashing the Potential of Mamba: Boosting a LiDAR 3D Sparse Detector by Using Cross-Model Knowledge Distillation [22.653014803666668]
FASDと呼ばれる高速LiDAR3Dオブジェクト検出フレームワークを提案する。
高速シーケンスモデリングのための変換器のキャパシティをFLOPの低いMambaモデルに蒸留し,知識伝達による精度の向上を実現することを目的とする。
我々は,データセットとnuScenesのフレームワークを評価し,リソース消費の4倍の削減と,現在のSoTA手法よりも1-2%の性能向上を実現した。
論文 参考訳(メタデータ) (2024-09-17T09:30:43Z) - MonoMM: A Multi-scale Mamba-Enhanced Network for Real-time Monocular 3D Object Detection [9.780498146964097]
リアルタイムモノクロ3Dオブジェクト検出のための革新的なネットワークアーキテクチャであるMonoMMを提案する。
MonoMM は Focused Multi-Scale Fusion (FMF) と Depth-Aware Feature Enhancement Mamba (DMB) モジュールで構成されている。
提案手法は,従来の単分子法よりも優れ,リアルタイム検出を実現する。
論文 参考訳(メタデータ) (2024-08-01T10:16:58Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
動的シーン再構築のための新しい動き認識拡張フレームワークを提案する。
具体的には,まず3次元ガウス運動と画素レベルの流れの対応性を確立する。
より厳密な最適化問題を示す先行的な変形に基づくパラダイムに対して,過渡対応変形補助モジュールを提案する。
論文 参考訳(メタデータ) (2024-03-18T03:46:26Z) - A Spatial-Temporal Dual-Mode Mixed Flow Network for Panoramic Video
Salient Object Detection [5.207048071888257]
本研究では,パノラマ映像の空間的流れとそれに対応する光学的流れを利用する時空間二重モード混合流れネットワーク(STDMMF-Net)を提案する。
多くの主観的および客観的な実験結果から,提案手法が最先端(SOTA)法よりも優れた検出精度を示すことが確認された。
提案手法の総合性能は, モデル推論, テスト時間, 複雑性, 一般化性能に要求されるメモリの点で優れている。
論文 参考訳(メタデータ) (2023-10-13T11:25:41Z) - MonoTDP: Twin Depth Perception for Monocular 3D Object Detection in
Adverse Scenes [49.21187418886508]
本論文は,モノTDP(MonoTDP)と呼ばれる悪シーンにおける2つの深度を知覚するモノクル3次元検出モデルを提案する。
まず、制御不能な気象条件を扱うモデルを支援するための適応学習戦略を導入し、様々な劣化要因による劣化を著しく抑制する。
そこで本研究では, シーン深度と物体深度を同時に推定する新たな2つの深度認識モジュールを提案する。
論文 参考訳(メタデータ) (2023-05-18T13:42:02Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
我々は、一般的な半教師付きフレームワークを用いて、難解な単分子3次元物体検出問題を改善する。
我々は、ラベルのないデータから豊富な情報的サンプルを探索する、新しい、シンプルで効果的なAugment and Criticize'フレームワークを紹介します。
3DSeMo_DLEと3DSeMo_FLEXと呼ばれる2つの新しい検出器は、KITTIのAP_3D/BEV(Easy)を3.5%以上改善した。
論文 参考訳(メタデータ) (2023-03-20T16:28:15Z) - SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video
Anomaly Detection [108.57862846523858]
自己教師型マルチタスク学習フレームワークを再考し、元の手法にいくつかのアップデートを提案する。
マルチヘッド・セルフアテンション・モジュールを導入することで3次元畳み込みバックボーンを近代化する。
モデルをさらに改良するために,セグメントマップの予測などの自己指導型学習タスクについて検討した。
論文 参考訳(メタデータ) (2022-07-16T19:25:41Z) - The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection [62.1185839286255]
低コストのモノクル3D物体検出は、自律運転において基本的な役割を果たす。
DFR-Netという動的特徴反射ネットワークを導入する。
我々は、KITTIテストセットの全ての単分子3D物体検出器の中で、第1位にランク付けする。
論文 参考訳(メタデータ) (2021-12-28T07:31:18Z) - Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images
with Virtual Depth [64.29043589521308]
仮想深度で画像を合成することでトレーニングデータを増強するレンダリングモジュールを提案する。
レンダリングモジュールは、RGB画像と対応するスパース深度画像とを入力として、さまざまなフォトリアリスティック合成画像を出力する。
さらに,深度推定タスクを通じて共同で最適化することで,検出モデルを改善する補助モジュールを導入する。
論文 参考訳(メタデータ) (2021-07-28T11:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。