論文の概要: A Survey on Mathematical Reasoning and Optimization with Large Language Models
- arxiv url: http://arxiv.org/abs/2503.17726v1
- Date: Sat, 22 Mar 2025 10:49:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 16:32:16.791442
- Title: A Survey on Mathematical Reasoning and Optimization with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた数学的推論と最適化に関する研究
- Authors: Ali Forootani,
- Abstract要約: 大規模言語モデル(LLM)の最近の進歩は、AIによる数学的推論、定理証明、最適化技術を大幅に改善している。
この調査は、AIにおける数学的問題解決の進化を、初期の統計的学習アプローチから近代的なディープラーニングやトランスフォーマーに基づく方法論まで調査する。
- 参考スコア(独自算出の注目度): 0.5439020425819
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mathematical reasoning and optimization are fundamental to artificial intelligence and computational problem-solving. Recent advancements in Large Language Models (LLMs) have significantly improved AI-driven mathematical reasoning, theorem proving, and optimization techniques. This survey explores the evolution of mathematical problem-solving in AI, from early statistical learning approaches to modern deep learning and transformer-based methodologies. We review the capabilities of pretrained language models and LLMs in performing arithmetic operations, complex reasoning, theorem proving, and structured symbolic computation. A key focus is on how LLMs integrate with optimization and control frameworks, including mixed-integer programming, linear quadratic control, and multi-agent optimization strategies. We examine how LLMs assist in problem formulation, constraint generation, and heuristic search, bridging theoretical reasoning with practical applications. We also discuss enhancement techniques such as Chain-of-Thought reasoning, instruction tuning, and tool-augmented methods that improve LLM's problem-solving performance. Despite their progress, LLMs face challenges in numerical precision, logical consistency, and proof verification. Emerging trends such as hybrid neural-symbolic reasoning, structured prompt engineering, and multi-step self-correction aim to overcome these limitations. Future research should focus on interpretability, integration with domain-specific solvers, and improving the robustness of AI-driven decision-making. This survey offers a comprehensive review of the current landscape and future directions of mathematical reasoning and optimization with LLMs, with applications across engineering, finance, and scientific research.
- Abstract(参考訳): 数学的推論と最適化は、人工知能と計算問題解決の基本である。
大規模言語モデル(LLM)の最近の進歩は、AIによる数学的推論、定理証明、最適化技術を大幅に改善している。
この調査は、AIにおける数学的問題解決の進化を、初期の統計的学習アプローチから近代的なディープラーニングやトランスフォーマーに基づく方法論まで調査する。
本稿では,算術演算,複雑な推論,定理証明,構造化記号計算における事前学習言語モデルとLLMの機能について概説する。
LLMは、混合整数プログラミング、線形二次制御、マルチエージェント最適化など、最適化と制御のフレームワークとどのように統合されるかに重点を置いている。
本研究では, LLMが問題定式化, 制約生成, ヒューリスティック探索にどのように役立つかを検討する。
また,LLMの問題解決性能を向上させるため,Chain-of-Thought推論,命令チューニング,ツール拡張手法などの拡張手法についても論じる。
それらの進歩にもかかわらず、LLMは数値的精度、論理的整合性、証明検証の課題に直面している。
ハイブリッドニューラルシンボリック推論、構造化プロンプトエンジニアリング、多段階自己補正といった新興トレンドは、これらの制限を克服することを目的としている。
今後の研究は、解釈可能性、ドメイン固有の問題解決者との統合、AIによる意思決定の堅牢性の改善に焦点を当てるべきである。
この調査は、LLMによる数学的推論と最適化の現在の状況と今後の方向性を総合的にレビューし、工学、金融、科学研究にまたがる応用について紹介する。
関連論文リスト
- Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1) [66.51642638034822]
推論は人間の知性の中心であり、多様なタスクにまたがる構造化された問題解決を可能にする。
大規模言語モデル(LLM)の最近の進歩は、算術、常識、記号領域における推論能力を大幅に向上させてきた。
本稿では,テキストおよびマルチモーダルLLMにおける推論手法の簡潔かつ洞察に富んだ概要について述べる。
論文 参考訳(メタデータ) (2025-04-04T04:04:56Z) - A Survey of Scaling in Large Language Model Reasoning [62.92861523305361]
大規模言語モデル(LLM)推論におけるスケーリングの総合的な検討について述べる。
我々は、多段階推論と論理的整合性を改善する推論ステップにおけるスケーリングを分析する。
我々は、反復モデルの改善による最適化に焦点を当て、トレーニング可能な推論のスケーリングについて論じる。
論文 参考訳(メタデータ) (2025-04-02T23:51:27Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,5つのコアパラダイムにまたがるPoLMの進化を体系的に追跡する,最初の包括的調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - Large Language Models for Mathematical Analysis [3.7325315394927023]
この研究は、数学的推論における重要なギャップに対処し、信頼できるAIの進歩に寄与する。
DEMI-MathAnalysisデータセットを開発した。
また,LLMの問題解決能力を高めるためのガイドフレームワークも設計した。
論文 参考訳(メタデータ) (2024-12-28T20:37:55Z) - Large Language Models for Combinatorial Optimization of Design Structure Matrix [4.513609458468522]
エンジニアリングアプリケーションの効率と性能を改善するためには、組合せ最適化(CO)が不可欠である。
実世界の工学的問題に関しては、純粋数学的推論に基づくアルゴリズムは限定的であり、最適化に必要な文脈ニュアンスを捉えることができない。
本研究では,工学的CO問題の解法におけるLarge Language Models (LLMs) の可能性について,その推論能力と文脈的知識を活用して検討する。
論文 参考訳(メタデータ) (2024-11-19T15:39:51Z) - Non-myopic Generation of Language Models for Reasoning and Planning [45.75146679449453]
本稿では,モデル予測制御を利用した予測復号化手法を提案する。
我々の実験では、数学、コーディング、エージェントの幅広いタスクにおいて、大幅な改善が示されている。
論文 参考訳(メタデータ) (2024-10-22T17:13:38Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - Accessing GPT-4 level Mathematical Olympiad Solutions via Monte Carlo Tree Self-refine with LLaMa-3 8B [48.45472563225202]
本稿では,大規模言語モデル (LLM) とモンテカルロ木探索 (MCTS) を革新的に統合した MCT Self-Refine (MCTSr) アルゴリズムを提案する。
このアルゴリズムは、セレクション、自己定義、自己評価、バックプロパゲーションの反復的なプロセスを通じてモンテカルロ探索木を構築する。
大規模な実験は、オリンピアードレベルの数学問題の解法におけるMCTSrの有効性を示す。
論文 参考訳(メタデータ) (2024-06-11T16:01:07Z) - When Large Language Model Meets Optimization [7.822833805991351]
大規模言語モデル(LLM)は、インテリジェントなモデリングと最適化における戦略的意思決定を容易にする。
本稿では,LLMと最適化アルゴリズムの組み合わせの進展と可能性について概説する。
論文 参考訳(メタデータ) (2024-05-16T13:54:37Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving [64.38649623473626]
大規模言語モデル(LLM)は人工知能の大幅な進歩を導いた。
数学的問題を解く能力を高めるために,textbfSEquential subtextbfGoal textbfOptimization (SEGO) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-19T17:56:40Z) - A Survey of Contextual Optimization Methods for Decision Making under
Uncertainty [47.73071218563257]
この記事では、データからポリシーを学ぶための3つの主要なフレームワークを特定し、その強みと限界について論じる。
統一的な表記と用語の下で既存のモデルとメソッドを示し、これらを3つの主要なフレームワークに従って分類する。
論文 参考訳(メタデータ) (2023-06-17T15:21:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。