論文の概要: Improving Preference Extraction In LLMs By Identifying Latent Knowledge Through Classifying Probes
- arxiv url: http://arxiv.org/abs/2503.17755v1
- Date: Sat, 22 Mar 2025 12:35:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:38:58.348017
- Title: Improving Preference Extraction In LLMs By Identifying Latent Knowledge Through Classifying Probes
- Title(参考訳): 探触子分類による潜在知識の同定によるLLMの選好抽出の改善
- Authors: Sharan Maiya, Yinhong Liu, Ramit Debnath, Anna Korhonen,
- Abstract要約: 大規模言語モデル(LLM)は、しばしばテキストを評価するために自動判断器として使用される。
本稿では,2つのプロンプト間の差異を利用して学習した線形分類プローブを用いて,潜在知識にアクセスし,より正確な選好を抽出する手法を提案する。
- 参考スコア(独自算出の注目度): 20.20764453136706
- License:
- Abstract: Large Language Models (LLMs) are often used as automated judges to evaluate text, but their effectiveness can be hindered by various unintentional biases. We propose using linear classifying probes, trained by leveraging differences between contrasting pairs of prompts, to directly access LLMs' latent knowledge and extract more accurate preferences. Through extensive experiments using models of varying size from four different families and six diverse datasets assessing text quality evaluation and common sense reasoning, we demonstrate that both supervised and unsupervised probing approaches consistently outperform traditional generation-based judgement while maintaining similar computational costs. These probes generalise under domain shifts and can even outperform finetuned evaluators with the same training data size. Our results suggest linear probing offers an accurate, robust and computationally efficient approach for LLM-as-judge tasks while providing interpretable insights into how models encode judgement-relevant knowledge. Our data and code will be openly released in the future.
- Abstract(参考訳): 大規模言語モデル(LLM)は、テキストを評価する自動判断器としてしばしば使用されるが、その効果は意図しない様々なバイアスによって妨げられる。
そこで我々は,LLMの潜在知識に直接アクセスし,より正確な選好を抽出するために,コントラストとプロンプトの差を利用した線形分類プローブを提案する。
4つの異なる家族と6つの多様なデータセットから異なるサイズのモデルを用いて、テキスト品質評価と常識推論を評価することによって、教師付きおよび教師なしの探索アプローチが、同様の計算コストを維持しながら、従来の世代ベースの判断を一貫して上回ることを示した。
これらのプローブは、ドメインシフトの下で一般化され、同じトレーニングデータサイズで微調整された評価器よりも優れている。
この結果から,線形探索はLLM-as-judgeタスクに対して正確で頑健で計算効率のよい手法であり,モデルの判断関連知識のエンコード方法に関する解釈可能な洞察を提供する。
将来、私たちのデータとコードは公開されます。
関連論文リスト
- Aligning Large Language Models to Follow Instructions and Hallucinate Less via Effective Data Filtering [66.5524727179286]
NOVAは、幻覚を減らすための学習知識とよく一致した高品質なデータを特定するために設計されたフレームワークである。
内部整合性探索(ICP)とセマンティック等価同定(SEI)が含まれており、LLMが命令データとどれだけ親しみやすいかを測定する。
選択したサンプルの品質を確保するため,親しみ以上の特性を考慮した専門家による報酬モデルを導入する。
論文 参考訳(メタデータ) (2025-02-11T08:05:56Z) - KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [73.34893326181046]
大規模言語モデル(LLM)は通常、知識材料を瞬時に活用するために、検索強化世代に依存している。
本稿では,知識ベースを含む下流タスクへの効率的な適応を目的としたKBAlignを提案する。
提案手法は,Q&Aペアやリビジョン提案などの自己注釈付きデータを用いて反復学習を行い,モデルが知識内容を効率的に把握できるようにする。
論文 参考訳(メタデータ) (2024-11-22T08:21:03Z) - Bayesian Calibration of Win Rate Estimation with LLM Evaluators [20.588104799661014]
本研究では,大言語モデル(LLM)を評価対象として,勝利率推定の精度を向上させる2つの手法を提案する。
我々は,ストーリ生成,要約,タスクの指示を含む6つのデータセット上で,我々の手法を実証的に検証した。
論文 参考訳(メタデータ) (2024-11-07T04:32:40Z) - Fair In-Context Learning via Latent Concept Variables [17.216196320585922]
大規模言語モデル(LLM)は、学習前のデータから社会的偏見と差別を継承することができる。
我々は、予測結果と敏感な変数との相関を低減し、潜在概念学習における公平性の促進を支援するデータ強化戦略を設計する。
論文 参考訳(メタデータ) (2024-11-04T23:10:05Z) - Dynamic Uncertainty Ranking: Enhancing Retrieval-Augmented In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
大規模言語モデル(LLM)は、事前訓練中に多様なドメインから膨大な量の知識を学習することができる。
専門ドメインからの長い尾の知識は、しばしば不足し、表現されていないため、モデルの記憶にはほとんど現れない。
ICLの強化学習に基づく動的不確実性ランキング手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T03:42:17Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Large Language Models are Biased Reinforcement Learners [0.0]
大規模言語モデル (LLM) は相対値バイアスの行動的シグネチャを示す。
計算的認知モデリングにより、LLMの挙動は単純なRLアルゴリズムによってよく記述されていることが明らかになった。
論文 参考訳(メタデータ) (2024-05-19T01:43:52Z) - Evaluating the Factuality of Large Language Models using Large-Scale Knowledge Graphs [30.179703001666173]
大規模言語モデル(LLM)にとって、ファクチュアリティの問題は重要な問題である
我々は,かなり大きなテストデータセットを用いて,LLMの性能を評価するためにGraphEvalを提案する。
テストデータセットは、高価な人的努力なしで1000万以上の事実を持つ大規模な知識グラフから取得される。
論文 参考訳(メタデータ) (2024-04-01T06:01:17Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
オープンエンド生成タスクをトークンレベルの予測タスクに再構成する。
我々はLSMに答えを自己評価するように指示する。
自己評価に基づくスコアリング手法をベンチマークする。
論文 参考訳(メタデータ) (2023-12-14T19:09:22Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。