論文の概要: Large Language Models are Biased Reinforcement Learners
- arxiv url: http://arxiv.org/abs/2405.11422v1
- Date: Sun, 19 May 2024 01:43:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 17:49:33.777633
- Title: Large Language Models are Biased Reinforcement Learners
- Title(参考訳): 大規模言語モデルはバイアス付き強化学習者である
- Authors: William M. Hayes, Nicolas Yax, Stefano Palminteri,
- Abstract要約: 大規模言語モデル (LLM) は相対値バイアスの行動的シグネチャを示す。
計算的認知モデリングにより、LLMの挙動は単純なRLアルゴリズムによってよく記述されていることが明らかになった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-context learning enables large language models (LLMs) to perform a variety of tasks, including learning to make reward-maximizing choices in simple bandit tasks. Given their potential use as (autonomous) decision-making agents, it is important to understand how these models perform such reinforcement learning (RL) tasks and the extent to which they are susceptible to biases. Motivated by the fact that, in humans, it has been widely documented that the value of an outcome depends on how it compares to other local outcomes, the present study focuses on whether similar value encoding biases apply to how LLMs encode rewarding outcomes. Results from experiments with multiple bandit tasks and models show that LLMs exhibit behavioral signatures of a relative value bias. Adding explicit outcome comparisons to the prompt produces opposing effects on performance, enhancing maximization in trained choice sets but impairing generalization to new choice sets. Computational cognitive modeling reveals that LLM behavior is well-described by a simple RL algorithm that incorporates relative values at the outcome encoding stage. Lastly, we present preliminary evidence that the observed biases are not limited to fine-tuned LLMs, and that relative value processing is detectable in the final hidden layer activations of a raw, pretrained model. These findings have important implications for the use of LLMs in decision-making applications.
- Abstract(参考訳): インコンテキスト学習により、大規模言語モデル(LLM)は、単純なバンディットタスクで報酬を最大化する選択を学習するなど、さまざまなタスクを実行できる。
自己決定エージェントとしての可能性を考えると、これらのモデルがどのように強化学習(RL)タスクを実行し、バイアスの影響を受けやすい範囲を理解することが重要である。
ヒトでは、結果の価値が他の局所的な結果とどのように比較されるかに大きく依存しているという事実から、本研究では、LCMが報酬の成果をエンコードする方法に類似した値の符号化バイアスが適用されるかどうかに焦点を当てた。
複数のバンドイットタスクとモデルを用いた実験の結果、LLMは相対値バイアスの行動的シグネチャを示すことが示された。
プロンプトに明確な結果比較を加えると、性能に反する効果が生じ、訓練された選択集合の最大化が向上するが、新しい選択集合への一般化を損なう。
計算認知モデルにより、LLMの挙動は、結果エンコーディング段階で相対値を含む単純なRLアルゴリズムによってよく記述されていることが明らかになった。
最後に、観測されたバイアスは微調整LDMに限らず、相対値処理は生の事前学習モデルの最終的な隠蔽層活性化において検出可能であるという予備的証拠を示す。
これらの知見は、意思決定にLLMを使うことに重要な意味を持つ。
関連論文リスト
- LLMs are Biased Evaluators But Not Biased for Retrieval Augmented Generation [28.61326111959728]
大規模言語モデル(LLM)は評価タスク、特に優先的に評価し、自己生成したコンテンツを好む場合に重大なバイアスを示す。
本研究では,この知識ギャップを,検索強化世代(RAG)フレームワークの2つの重要なフェーズをシミュレートすることによって解決する。
以上の結果とは対照的に,RAGフレームワークに有意な自己選好効果は認められなかった。
論文 参考訳(メタデータ) (2024-10-28T08:32:09Z) - Aggregation Artifacts in Subjective Tasks Collapse Large Language Models' Posteriors [74.04775677110179]
In-context Learning (ICL) は、Large Language Models (LLM) を用いた自然言語処理の主要な手法となっている。
本研究は,低アグリゲーション,異質なアノテーションを組み合わせたアグリゲーションの結果が,プロンプトに有害なノイズを生じさせるアノテーションのアーティファクトに繋がるかどうかを考察する。
この結果から,アグリゲーションは主観的タスクのモデル化において不明瞭な要因であり,代わりに個人をモデリングすることを重視することが示唆された。
論文 参考訳(メタデータ) (2024-10-17T17:16:00Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism [39.392450788666814]
大規模言語モデル(LLM)の現在の評価は、しばしば非決定論を見落としている。
greedyデコーディングは一般的に、最も評価されたタスクのサンプリング方法よりも優れています。
より小型のLPMはGPT-4-Turboのような大型のモデルと一致するか、超えることができる。
論文 参考訳(メタデータ) (2024-07-15T06:12:17Z) - Through the Thicket: A Study of Number-Oriented LLMs derived from Random Forest Models [0.0]
大規模言語モデル (LLM) はテキスト処理において例外的な性能を示した。
本稿では,ランダムフォレスト(RF)アンサンブルからの知識伝達を用いたLLMの学習手法を提案する。
我々は、細調整のためのアウトプットを生成し、その決定を分類し、説明するモデルの能力を高めます。
論文 参考訳(メタデータ) (2024-06-07T13:31:51Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) は、Large Language Models (LLM) を用いた自然言語処理のための強力なパラダイムとして登場した。
LLMには、感情認識において強いが矛盾する先行性があり、その予測に影響を及ぼすことが示される。
以上の結果から,ICLをより大きなLCMで事前学習領域外の情動中心タスクに使用する場合,注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-25T19:07:32Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
LLM(Large-Language-Models)は幅広いアプリケーションにデプロイされ、その応答は社会的影響を増大させる。
価値バイアスは、人間の研究結果と同様、異なるカテゴリにわたるLSMにおいて強いことが示される。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。