Topology preserving Image segmentation using the iterative convolution-thresholding method
- URL: http://arxiv.org/abs/2503.17792v1
- Date: Sat, 22 Mar 2025 14:59:15 GMT
- Title: Topology preserving Image segmentation using the iterative convolution-thresholding method
- Authors: Lingyun Deng, Litong Liu, Dong Wang, Xiao-Ping Wang,
- Abstract summary: This paper introduces a topology-preserving constraint into the iterative convolution-thresholding method (ICTM)<n>Experiments demonstrate that, by explicitly preserving the topological properties of target objects, the proposed algorithm achieves enhanced accuracy and robustness.
- Score: 9.341617883846702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational models are widely used in image segmentation, with various models designed to address different types of images by optimizing specific objective functionals. However, traditional segmentation models primarily focus on the visual attributes of the image, often neglecting the topological properties of the target objects. This limitation can lead to segmentation results that deviate from the ground truth, particularly in images with complex topological structures. In this paper, we introduce a topology-preserving constraint into the iterative convolution-thresholding method (ICTM), resulting in the topology-preserving ICTM (TP-ICTM). Extensive experiments demonstrate that, by explicitly preserving the topological properties of target objects-such as connectivity-the proposed algorithm achieves enhanced accuracy and robustness, particularly in images with intricate structures or noise.
Related papers
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.
Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.
Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - Conformable Convolution for Topologically Aware Learning of Complex Anatomical Structures [38.20599800950335]
We introduce Conformable Convolution, a novel convolutional layer designed to explicitly enforce topological consistency.<n>Topological Posterior Generator (TPG) module identifies key topological features and guides the convolutional layers.<n>We showcase the effectiveness of our framework in the segmentation task, where preserving the interconnectedness of structures is critical.
arXiv Detail & Related papers (2024-12-29T22:41:33Z) - Topology-Preserving Image Segmentation with Spatial-Aware Persistent Feature Matching [14.569312113899043]
We propose an effective and efficient Spatial-Aware Topological Loss Function that further leverages the information in the original spatial domain of the image.<n>Experiments on images of various types of tubular structures show that the proposed method has superior performance in improving the topological accuracy of the segmentation.
arXiv Detail & Related papers (2024-12-03T01:38:15Z) - Slender Object Scene Segmentation in Remote Sensing Image Based on Learnable Morphological Skeleton with Segment Anything Model [23.419029471215325]
We propose a new approach that integrates learnable morphological skeleton prior into deep neural networks.<n> Experimental results on remote sensing datasets, including buildings, roads and water, demonstrate that our method outperforms the original Segment Anything Model.
arXiv Detail & Related papers (2024-11-13T13:19:51Z) - Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
Topological correctness plays a critical role in many image segmentation tasks.
Most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy.
We propose a novel, graph-based framework for topologically accurate image segmentation.
arXiv Detail & Related papers (2024-11-05T16:20:14Z) - Enhancing Boundary Segmentation for Topological Accuracy with Skeleton-based Methods [7.646983689651424]
Topological consistency plays a crucial role in the task of boundary segmentation for reticular images.
We propose the Skea-Topo Aware loss, which is a novel loss function that takes into account the shape of each object and topological significance of the pixels.
Experiments prove that our method improves topological consistency by up to 7 points in VI compared to 13 state-of-art methods.
arXiv Detail & Related papers (2024-04-29T09:27:31Z) - EmerDiff: Emerging Pixel-level Semantic Knowledge in Diffusion Models [52.3015009878545]
We develop an image segmentor capable of generating fine-grained segmentation maps without any additional training.
Our framework identifies semantic correspondences between image pixels and spatial locations of low-dimensional feature maps.
In extensive experiments, the produced segmentation maps are demonstrated to be well delineated and capture detailed parts of the images.
arXiv Detail & Related papers (2024-01-22T07:34:06Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Deep Spectral Methods: A Surprisingly Strong Baseline for Unsupervised
Semantic Segmentation and Localization [98.46318529630109]
We take inspiration from traditional spectral segmentation methods by reframing image decomposition as a graph partitioning problem.
We find that these eigenvectors already decompose an image into meaningful segments, and can be readily used to localize objects in a scene.
By clustering the features associated with these segments across a dataset, we can obtain well-delineated, nameable regions.
arXiv Detail & Related papers (2022-05-16T17:47:44Z) - Image Segmentation with Homotopy Warping [10.093435601073484]
topological correctness is crucial for the segmentation of images with fine-scale structures.
By leveraging the theory of digital topology, we identify locations in an image that are critical for topology.
We propose a new homotopy warping loss to train deep image segmentation networks for better topological accuracy.
arXiv Detail & Related papers (2021-12-15T00:33:15Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.