Poisson-Process Topic Model for Integrating Knowledge from Pre-trained Language Models
- URL: http://arxiv.org/abs/2503.17809v1
- Date: Sat, 22 Mar 2025 16:19:04 GMT
- Title: Poisson-Process Topic Model for Integrating Knowledge from Pre-trained Language Models
- Authors: Morgane Austern, Yuanchuan Guo, Zheng Tracy Ke, Tianle Liu,
- Abstract summary: We use a pre-trained LLM to convert each document into a sequence of word embeddings.<n>This sequence is then modeled as a Poisson point process, with its intensity measure expressed as a convex combination of $K$ base measures, each corresponding to a topic.<n>We propose a flexible algorithm that integrates traditional topic modeling methods, enhanced by net-rounding applied before and kernel smoothing applied after.
- Score: 9.539646729556793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Topic modeling is traditionally applied to word counts without accounting for the context in which words appear. Recent advancements in large language models (LLMs) offer contextualized word embeddings, which capture deeper meaning and relationships between words. We aim to leverage such embeddings to improve topic modeling. We use a pre-trained LLM to convert each document into a sequence of word embeddings. This sequence is then modeled as a Poisson point process, with its intensity measure expressed as a convex combination of $K$ base measures, each corresponding to a topic. To estimate these topics, we propose a flexible algorithm that integrates traditional topic modeling methods, enhanced by net-rounding applied before and kernel smoothing applied after. One advantage of this framework is that it treats the LLM as a black box, requiring no fine-tuning of its parameters. Another advantage is its ability to seamlessly integrate any traditional topic modeling approach as a plug-in module, without the need for modifications Assuming each topic is a $\beta$-H\"{o}lder smooth intensity measure on the embedded space, we establish the rate of convergence of our method. We also provide a minimax lower bound and show that the rate of our method matches with the lower bound when $\beta\leq 1$. Additionally, we apply our method to several datasets, providing evidence that it offers an advantage over traditional topic modeling approaches.
Related papers
- LESA: Learnable LLM Layer Scaling-Up [57.0510934286449]
Training Large Language Models (LLMs) from scratch requires immense computational resources, making it prohibitively expensive.<n>Model scaling-up offers a promising solution by leveraging the parameters of smaller models to create larger ones.<n>We propose textbfLESA, a novel learnable method for depth scaling-up.
arXiv Detail & Related papers (2025-02-19T14:58:48Z) - Towards Compatible Fine-tuning for Vision-Language Model Updates [114.25776195225494]
Class-conditioned Context Optimization (ContCoOp) integrates learnable prompts with class embeddings using an attention layer before inputting them into the text encoder.
Our experiments over 15 datasets show that our ContCoOp achieves the highest compatibility over the baseline methods, and exhibits robust out-of-distribution generalization.
arXiv Detail & Related papers (2024-12-30T12:06:27Z) - Enhancing Short-Text Topic Modeling with LLM-Driven Context Expansion and Prefix-Tuned VAEs [25.915607750636333]
We propose a novel approach that leverages large language models (LLMs) to extend short texts into more detailed sequences before applying topic modeling.
Our method significantly improves short-text topic modeling performance, as demonstrated by extensive experiments on real-world datasets with extreme data sparsity.
arXiv Detail & Related papers (2024-10-04T01:28:56Z) - Semantic-Driven Topic Modeling Using Transformer-Based Embeddings and Clustering Algorithms [6.349503549199403]
This study introduces an innovative end-to-end semantic-driven topic modeling technique for the topic extraction process.
Our model generates document embeddings using pre-trained transformer-based language models.
Compared to ChatGPT and traditional topic modeling algorithms, our model provides more coherent and meaningful topics.
arXiv Detail & Related papers (2024-09-30T18:15:31Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Enhancing Black-Box Few-Shot Text Classification with Prompt-Based Data
Augmentation [42.05617728412819]
We show how to optimize few-shot text classification without accessing the gradients of the large-scale language models.
Our approach, dubbed BT-Classifier, significantly outperforms state-of-the-art black-box few-shot learners.
arXiv Detail & Related papers (2023-05-23T07:54:34Z) - Efficient and Flexible Topic Modeling using Pretrained Embeddings and
Bag of Sentences [1.8592384822257952]
We propose a novel topic modeling and inference algorithm.
We leverage pre-trained sentence embeddings by combining generative process models and clustering.
TheTailor evaluation shows that our method yields state-of-the art results with relatively little computational demands.
arXiv Detail & Related papers (2023-02-06T20:13:11Z) - Bayesian Prompt Learning for Image-Language Model Generalization [64.50204877434878]
We use the regularization ability of Bayesian methods to frame prompt learning as a variational inference problem.
Our approach regularizes the prompt space, reduces overfitting to the seen prompts and improves the prompt generalization on unseen prompts.
We demonstrate empirically on 15 benchmarks that Bayesian prompt learning provides an appropriate coverage of the prompt space.
arXiv Detail & Related papers (2022-10-05T17:05:56Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z) - Early Stage LM Integration Using Local and Global Log-Linear Combination [46.91755970827846]
Sequence-to-sequence models with an implicit alignment mechanism (e.g. attention) are closing the performance gap towards traditional hybrid hidden Markov models (HMM)
One important factor to improve word error rate in both cases is the use of an external language model (LM) trained on large text-only corpora.
We present a novel method for language model integration into implicit-alignment based sequence-to-sequence models.
arXiv Detail & Related papers (2020-05-20T13:49:55Z) - VSEC-LDA: Boosting Topic Modeling with Embedded Vocabulary Selection [20.921010767231923]
We propose a new approach to topic modeling, termed Vocabulary-Selection-Embedded Correspondence-LDA (VSEC-LDA)
VSEC-LDA learns the latent model while simultaneously selecting most relevant words.
The selection of words is driven by an entropy-based metric that measures the relative contribution of the words to the underlying model.
arXiv Detail & Related papers (2020-01-15T22:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.