論文の概要: Cat-AIR: Content and Task-Aware All-in-One Image Restoration
- arxiv url: http://arxiv.org/abs/2503.17915v1
- Date: Sun, 23 Mar 2025 03:25:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:39:47.645098
- Title: Cat-AIR: Content and Task-Aware All-in-One Image Restoration
- Title(参考訳): Cat-AIR:コンテンツとタスク対応オールインワン画像復元
- Authors: Jiachen Jiang, Tianyu Ding, Ke Zhang, Jinxin Zhou, Tianyi Chen, Ilya Zharkov, Zhihui Zhu, Luming Liang,
- Abstract要約: Cat-AIRは textbfAnd textbfTask-aware framework for textbfImage textbfRestoration のための新しいフレームワークである。
Cat-AIRは、異なるタスクに対して局所的およびグローバル的情報を適応的にバランスをとる、交互に変化する空間チャネルアテンション機構を組み込んでいる。
実験により、Cat-AIRは広範囲の修復作業において最先端の結果を達成し、従来の方法よりもFLOPを少なくすることを示した。
- 参考スコア(独自算出の注目度): 50.46278224313221
- License:
- Abstract: All-in-one image restoration seeks to recover high-quality images from various types of degradation using a single model, without prior knowledge of the corruption source. However, existing methods often struggle to effectively and efficiently handle multiple degradation types. We present Cat-AIR, a novel \textbf{C}ontent \textbf{A}nd \textbf{T}ask-aware framework for \textbf{A}ll-in-one \textbf{I}mage \textbf{R}estoration. Cat-AIR incorporates an alternating spatial-channel attention mechanism that adaptively balances the local and global information for different tasks. Specifically, we introduce cross-layer channel attentions and cross-feature spatial attentions that allocate computations based on content and task complexity. Furthermore, we propose a smooth learning strategy that allows for seamless adaptation to new restoration tasks while maintaining performance on existing ones. Extensive experiments demonstrate that Cat-AIR achieves state-of-the-art results across a wide range of restoration tasks, requiring fewer FLOPs than previous methods, establishing new benchmarks for efficient all-in-one image restoration.
- Abstract(参考訳): オールインワン画像復元は, 破損源の事前知識のない単一モデルを用いて, 様々な種類の劣化画像から高品質画像の復元を目指す。
しかし、既存のメソッドは、複数の分解タイプを効果的かつ効率的に扱うのに苦労することが多い。
Cat-AIR, a novel \textbf{C}ontent \textbf{A}nd \textbf{T}ask-aware framework for \textbf{A}ll-in-one \textbf{I}mage \textbf{R}estoration。
Cat-AIRは、異なるタスクに対して局所的およびグローバル的情報を適応的にバランスをとる、交互に変化する空間チャネルアテンション機構を組み込んでいる。
具体的には、コンテンツとタスクの複雑さに基づいて計算を割り当てるクロス層チャネルアテンションとクロスフィーチャー空間アテンションを導入する。
さらに,既存のものの性能を維持しつつ,新しい復元作業にシームレスに適応できるスムーズな学習戦略を提案する。
広範な実験により、Cat-AIRは広範囲の修復作業において最先端の結果が得られ、従来の方法よりもFLOPが少なくなり、効率的なオールインワン画像復元のための新しいベンチマークが確立された。
関連論文リスト
- Multi-Scale Representation Learning for Image Restoration with State-Space Model [13.622411683295686]
効率的な画像復元のためのマルチスケール状態空間モデル(MS-Mamba)を提案する。
提案手法は,計算複雑性を低く保ちながら,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-08-19T16:42:58Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
拡散モデルに基づく普遍的な画像復元手法であるDiff-Restorerを提案する。
我々は、事前学習された視覚言語モデルを用いて、劣化した画像から視覚的プロンプトを抽出する。
また、デグレーション対応デコーダを設計し、構造的補正を行い、潜在コードをピクセル領域に変換する。
論文 参考訳(メタデータ) (2024-07-04T05:01:10Z) - Restorer: Removing Multi-Degradation with All-Axis Attention and Prompt Guidance [12.066756224383827]
textbfRestorerはトランスフォーマーベースのオールインワン画像復元モデルである。
追加のトレーニングを必要とせずに、現実世界のシナリオで複合的な劣化を処理することができる。
推論中は効率が良く、現実世界の応用の可能性も示唆している。
論文 参考訳(メタデータ) (2024-06-18T13:18:32Z) - Efficient Degradation-aware Any Image Restoration [83.92870105933679]
我々は,低ランク体制下での学習者(DaLe)を用いた効率的なオールインワン画像復元システムである textitDaAIR を提案する。
モデルキャパシティを入力劣化に動的に割り当てることにより、総合学習と特定の学習を統合した効率的な復調器を実現する。
論文 参考訳(メタデータ) (2024-05-24T11:53:27Z) - Unified-Width Adaptive Dynamic Network for All-In-One Image Restoration [50.81374327480445]
本稿では, 複雑な画像劣化を基本劣化の観点で表現できる, という新しい概念を提案する。
We propose the Unified-Width Adaptive Dynamic Network (U-WADN) which consist of two pivotal components: a Width Adaptive Backbone (WAB) and a Width Selector (WS)。
提案したU-WADNは、最大32.3%のFLOPを同時に削減し、約15.7%のリアルタイム加速を実現している。
論文 参考訳(メタデータ) (2024-01-24T04:25:12Z) - SPIRE: Semantic Prompt-Driven Image Restoration [66.26165625929747]
セマンティック・復元型画像復元フレームワークであるSPIREを開発した。
本手法は,復元強度の量的仕様を言語ベースで記述することで,より詳細な指導を支援する最初のフレームワークである。
本実験は, SPIREの修復性能が, 現状と比較して優れていることを示すものである。
論文 参考訳(メタデータ) (2023-12-18T17:02:30Z) - Parameter Efficient Adaptation for Image Restoration with Heterogeneous Mixture-of-Experts [52.39959535724677]
画像復元モデルの一般化を改善するための代替手法を提案する。
ローカル,グローバル,チャネル表現ベースをキャプチャするマルチブランチ設計のMixture-of-Experts (MoE) であるAdaptIRを提案する。
我々のAdaptIRは、単一劣化タスクにおける安定した性能を実現し、8時間間、微調整はわずか0.6%のパラメータしか持たず、ハイブリッド劣化タスクにおいて優れる。
論文 参考訳(メタデータ) (2023-12-12T14:27:59Z) - Prompt-based Ingredient-Oriented All-in-One Image Restoration [0.0]
複数の画像劣化課題に対処する新しいデータ成分指向手法を提案する。
具体的には、エンコーダを用いて特徴をキャプチャし、デコーダを誘導するための劣化情報を含むプロンプトを導入する。
我々の手法は最先端技術と競争的に機能する。
論文 参考訳(メタデータ) (2023-09-06T15:05:04Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。