論文の概要: STShield: Single-Token Sentinel for Real-Time Jailbreak Detection in Large Language Models
- arxiv url: http://arxiv.org/abs/2503.17932v1
- Date: Sun, 23 Mar 2025 04:23:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:39:35.040031
- Title: STShield: Single-Token Sentinel for Real-Time Jailbreak Detection in Large Language Models
- Title(参考訳): STShield:大規模言語モデルにおけるリアルタイムジェイルブレーク検出のためのシングルトークンセンサ
- Authors: Xunguang Wang, Wenxuan Wang, Zhenlan Ji, Zongjie Li, Pingchuan Ma, Daoyuan Wu, Shuai Wang,
- Abstract要約: 大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対してますます脆弱になっている。
本稿では,リアルタイムジェイルブレイク判定のための軽量フレームワークSTShieldを紹介する。
- 参考スコア(独自算出の注目度): 31.35788474507371
- License:
- Abstract: Large Language Models (LLMs) have become increasingly vulnerable to jailbreak attacks that circumvent their safety mechanisms. While existing defense methods either suffer from adaptive attacks or require computationally expensive auxiliary models, we present STShield, a lightweight framework for real-time jailbroken judgement. STShield introduces a novel single-token sentinel mechanism that appends a binary safety indicator to the model's response sequence, leveraging the LLM's own alignment capabilities for detection. Our framework combines supervised fine-tuning on normal prompts with adversarial training using embedding-space perturbations, achieving robust detection while preserving model utility. Extensive experiments demonstrate that STShield successfully defends against various jailbreak attacks, while maintaining the model's performance on legitimate queries. Compared to existing approaches, STShield achieves superior defense performance with minimal computational overhead, making it a practical solution for real-world LLM deployment.
- Abstract(参考訳): 大規模言語モデル(LLM)は、安全メカニズムを回避するジェイルブレイク攻撃にますます脆弱になっている。
既存の防御手法は適応攻撃に苦しむか、計算コストのかかる補助モデルを必要とするが、リアルタイムジェイルブレイク判定のための軽量なフレームワークSTShieldを提示する。
STShieldは、LLM独自のアライメント機能を活用して、モデル応答シーケンスにバイナリ安全性インジケータを付加する、新しいシングルトークンのセンチネルメカニズムを導入している。
本フレームワークは,通常のプロンプトの教師付き微調整と組込み空間摂動を用いた対角訓練を併用し,モデルユーティリティを保ちながら頑健な検出を実現する。
大規模な実験では、STShieldがさまざまなjailbreak攻撃に対して、モデルのパフォーマンスを正当なクエリで維持しながら、防御に成功したことが示されている。
既存のアプローチと比較して、STShieldは計算オーバーヘッドを最小限に抑えながら優れた防御性能を実現しており、現実のLLMデプロイメントの実用的なソリューションとなっている。
関連論文リスト
- DELMAN: Dynamic Defense Against Large Language Model Jailbreaking with Model Editing [62.43110639295449]
大きな言語モデル(LLM)は意思決定に広く適用されているが、そのデプロイはJailbreak攻撃によって脅かされている。
Delmanは、jailbreak攻撃に対する厳密でダイナミックな保護のために、直接モデル編集を活用する新しいアプローチである。
Delman氏は、モデルの有用性を維持しながら有害な振る舞いを中和するために、関連するパラメータの最小セットを直接更新する。
論文 参考訳(メタデータ) (2025-02-17T10:39:21Z) - Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
テスト時間計算による自動ジェイルブレイクに対する逆推論手法を開発した。
我々のアプローチは、LSMの脆弱性を理解するための新しいパラダイムを導入し、より堅牢で信頼性の高いAIシステムの開発の基礎を築いた。
論文 参考訳(メタデータ) (2025-02-03T18:59:01Z) - Latent-space adversarial training with post-aware calibration for defending large language models against jailbreak attacks [25.212057612342218]
大規模言語モデル(LLM)は、システム脆弱性を利用して安全性対策を回避し、有害な出力を生成するジェイルブレイク攻撃の影響を受けやすい。
この問題に対処するために,ポストアウェアフレームワークを用いたラテントスペース・アドバイザリアル・トレーニングを提案する。
論文 参考訳(メタデータ) (2025-01-18T02:57:12Z) - A Realistic Threat Model for Large Language Model Jailbreaks [87.64278063236847]
本研究では,ジェイルブレイク攻撃の原理的比較のための統一的脅威モデルを提案する。
私たちの脅威モデルは、パープレキシティの制約を組み合わせることで、ジェイルブレイクが自然のテキストからどれだけ逸脱するかを測定します。
我々は、この新しい現実的な脅威モデルに人気のある攻撃を適用する。
論文 参考訳(メタデータ) (2024-10-21T17:27:01Z) - Jailbreak Antidote: Runtime Safety-Utility Balance via Sparse Representation Adjustment in Large Language Models [8.024771725860127]
ジェイルブレイク攻撃は、大きな言語モデルを操作して有害なコンテンツを生成する。
Jailbreak Antidoteは、モデルの内部状態のスパースサブセットを操作することで、安全優先のリアルタイム調整を可能にする。
解析の結果,LLMの安全性関連情報はわずかに分散していることがわかった。
論文 参考訳(メタデータ) (2024-10-03T08:34:17Z) - MoJE: Mixture of Jailbreak Experts, Naive Tabular Classifiers as Guard for Prompt Attacks [2.873719680183099]
本稿では,大規模言語モデル(LLM)における脱獄予防の重要性を論じる。
我々は,既存の最先端ガードレールの限界を超えるよう設計された,新しいガードレールアーキテクチャであるMoJEを紹介する。
MoJEは、モデル推論中に最小限の計算オーバーヘッドを維持しながら、ジェイルブレイク攻撃の検出に優れる。
論文 参考訳(メタデータ) (2024-09-26T10:12:19Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
本稿では,大規模言語モデル(LLM)のための新しいプロンプトベースの防御機構であるDPPを紹介する。
従来のアプローチとは異なり、DPP は LLM の高能率を維持しながら最小の攻撃成功率 (ASR) を達成するように設計されている。
LLAMA-2-7B-ChatおよびMistral-7B-Instruct-v0.2モデルによる実験結果から,DSPの堅牢性と適応性が確認された。
論文 参考訳(メタデータ) (2024-05-30T14:40:35Z) - Defending Large Language Models against Jailbreak Attacks via Semantic
Smoothing [107.97160023681184]
適応型大規模言語モデル(LLM)は、ジェイルブレイク攻撃に対して脆弱である。
提案するSEMANTICSMOOTHは,与えられた入力プロンプトのセマンティック変換されたコピーの予測を集約するスムージングベースのディフェンスである。
論文 参考訳(メタデータ) (2024-02-25T20:36:03Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
我々は,無害アライメントのためのクロスモデルガイダンスを利用する新しい推論時間アライメント手法であるtextbfInferAligner を開発した。
実験結果から,本手法はファイナンス,医学,数学の分野特化モデルに極めて効果的に適用可能であることが示された。
これは有害な命令とジェイルブレイク攻撃の両方のアタック成功率(ASR)を著しく低下させ、下流タスクではほとんど変化のないパフォーマンスを維持している。
論文 参考訳(メタデータ) (2024-01-20T10:41:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。