論文の概要: FisherTune: Fisher-Guided Robust Tuning of Vision Foundation Models for Domain Generalized Segmentation
- arxiv url: http://arxiv.org/abs/2503.17940v1
- Date: Sun, 23 Mar 2025 04:47:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:36:39.102463
- Title: FisherTune: Fisher-Guided Robust Tuning of Vision Foundation Models for Domain Generalized Segmentation
- Title(参考訳): FisherTune: 汎用セグメンテーションのためのビジョンファウンデーションモデルのフィッシャーガイドロバストチューニング
- Authors: Dong Zhao, Jinlong Li, Shuang Wang, Mengyao Wu, Qi Zang, Nicu Sebe, Zhun Zhong,
- Abstract要約: 既存のアプローチでは、パラメータを選択的に微調整するか、VFMを凍結し、アダプタのみを更新する。
我々は、Domain-Related Fisher Information Matrix (DR-FIM) によって誘導される堅牢な微調整法である textbfFisherTune を提案する。
DR-FIMはタスクやドメイン間でパラメータの感度を測定し、汎用性を維持し、DGSS適応性を高めるための選択的更新を可能にする。
- 参考スコア(独自算出の注目度): 65.93276461982093
- License:
- Abstract: Vision Foundation Models (VFMs) excel in generalization due to large-scale pretraining, but fine-tuning them for Domain Generalized Semantic Segmentation (DGSS) while maintaining this ability remains challenging. Existing approaches either selectively fine-tune parameters or freeze the VFMs and update only the adapters, both of which may underutilize the VFMs' full potential in DGSS tasks. We observe that domain-sensitive parameters in VFMs, arising from task and distribution differences, can hinder generalization. To address this, we propose \textbf{FisherTune}, a robust fine-tuning method guided by the Domain-Related Fisher Information Matrix (DR-FIM). DR-FIM measures parameter sensitivity across tasks and domains, enabling selective updates that preserve generalization and enhance DGSS adaptability. FisherTune incorporates variational inference to stabilize DR-FIM estimation, treating parameters as Gaussian-distributed variables and leveraging pre-trained priors. Extensive experiments show that FisherTune achieves superior cross-domain segmentation while maintaining generalization, outperforming selective-parameter and adapter-based methods.
- Abstract(参考訳): ビジョン・ファンデーション・モデル(VFM)は、大規模事前訓練による一般化が優れているが、ドメイン一般化セマンティック・セマンティック・セマンティック・セグメンテーション(DGSS)のための微調整は依然として困難である。
既存のアプローチは、パラメータを選択的に微調整するか、VFMを凍結し、アダプタのみを更新する。
タスクや分布の違いから生じる VFM の領域依存パラメータが一般化を妨げることを観察する。
これを解決するために,Domain-Related Fisher Information Matrix (DR-FIM) でガイドされた頑健な微調整法である \textbf{FisherTune} を提案する。
DR-FIMはタスクやドメイン間でパラメータの感度を測定し、汎用性を維持し、DGSS適応性を高めるための選択的更新を可能にする。
FisherTune は DR-FIM 推定を安定させ、パラメータをガウス分布変数として扱い、事前訓練された先行値を活用する。
大規模な実験により、FisherTuneは、一般化を維持しながら優れたクロスドメインセグメンテーションを実現し、選択パラメータおよびアダプタベースの手法より優れた性能を発揮することが示された。
関連論文リスト
- FIESTA: Fourier-Based Semantic Augmentation with Uncertainty Guidance for Enhanced Domain Generalizability in Medical Image Segmentation [10.351755243183383]
医用画像セグメンテーション(MIS)における単一ソース領域一般化(SDG)は、1つのソースドメインのみのデータを使用してモデルを一般化し、目に見えないターゲットドメインからデータをセグメントすることを目的としている。
既存の手法では、MISでよく見られる詳細や不確実な領域を十分に考慮できないことが多く、誤分類につながる。
本稿では、不確実性ガイダンスを用いたFIESTAと呼ばれるフーリエに基づく意味拡張手法を提案する。
論文 参考訳(メタデータ) (2024-06-20T13:37:29Z) - Gradient Alignment for Cross-Domain Face Anti-Spoofing [26.517887637150594]
本稿では,新たな学習目標であるGAC-FASを紹介する。
従来のシャープネス対応最小化器とは異なり、GAC-FASは各領域の上昇点を特定し、一般化勾配の更新を制御する。
ドメイン間FASデータセットの厳密な検証によりGAC-FASの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-29T02:57:44Z) - HCVP: Leveraging Hierarchical Contrastive Visual Prompt for Domain
Generalization [69.33162366130887]
ドメイン一般化(DG)は、不変の機能を学ぶことによって、目に見えないシナリオに優れた機械学習モデルを作成するための取り組みである。
モデルにドメインレベルとタスク固有の特性を補足する新しい手法を提案する。
このアプローチは、特定の特徴から不変な特徴をより効果的に分離し、一般化を促進することを目的としている。
論文 参考訳(メタデータ) (2024-01-18T04:23:21Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
適応学習パラダイムの下で,textbfForgery-aware textbfAdaptive textbfVision textbfTransformer(FA-ViT)を提案する。
FA-ViTは、クロスデータセット評価において、Celeb-DFおよびDFDCデータセット上で93.83%と78.32%のAUCスコアを達成する。
論文 参考訳(メタデータ) (2023-09-20T06:51:11Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Learning to Learn Domain-invariant Parameters for Domain Generalization [29.821634033299855]
ドメイン一般化(DG)は、ソースドメインからドメイン不変表現をキャプチャすることでこの問題を克服することを目的としている。
DDC(Domain Decoupling and Combination)とDIGB(Domain-invariance-guided Backpropagation)の2つのモジュールを提案する。
提案手法は,高い一般化能力を有する最先端性能を実現する。
論文 参考訳(メタデータ) (2022-11-04T07:19:34Z) - On Fine-Tuned Deep Features for Unsupervised Domain Adaptation [23.18781318003242]
ドメイン適応性能を向上させるために,細調整された特徴と特徴変換に基づくUDA法を組み合わせる可能性について検討した。
具体的には、一般的なプログレッシブな擬似ラベリング手法を微調整フレームワークに統合し、微調整された特徴を抽出する。
ResNet-50/101 や DeiT-small/base を含む複数の深層モデルによる実験を行い、微調整された特徴の組み合わせを実証した。
論文 参考訳(メタデータ) (2022-10-25T15:07:04Z) - Learning Transferable Parameters for Unsupervised Domain Adaptation [29.962241958947306]
非自明なドメイン適応(UDA)は、学習機械が分散シフトの下でラベル付きソースドメインからラベルなしドメインに適応できるようにする。
本稿では,学習過程におけるドメイン固有情報による副作用を軽減するためにTransferable Learning(TransPar)を提案する。
論文 参考訳(メタデータ) (2021-08-13T09:09:15Z) - Transformer-Based Source-Free Domain Adaptation [134.67078085569017]
本研究では,ソースフリードメイン適応(SFDA)の課題について検討する。
我々は、FDAの一般化モデルを学ぶためのTransformer(TransDA)という、汎用的で効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-28T23:06:26Z) - Self-Guided Adaptation: Progressive Representation Alignment for Domain
Adaptive Object Detection [86.69077525494106]
非教師なしドメイン適応(UDA)は、オブジェクト検出モデルのドメイン間ロバスト性を改善するために前例のない成功を収めた。
既存のUDA手法は、モデル学習中の瞬間的なデータ分布を無視しており、大きなドメインシフトによって特徴表現が劣化する可能性がある。
本稿では、特徴表現の整合とドメイン間のオブジェクト検出モデルの転送を目標とする自己ガイド適応モデルを提案する。
論文 参考訳(メタデータ) (2020-03-19T13:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。