論文の概要: Physics-Guided Multi-Fidelity DeepONet for Data-Efficient Flow Field Prediction
- arxiv url: http://arxiv.org/abs/2503.17941v1
- Date: Sun, 23 Mar 2025 04:48:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:34:29.916872
- Title: Physics-Guided Multi-Fidelity DeepONet for Data-Efficient Flow Field Prediction
- Title(参考訳): データ効率な流れ場予測のための物理誘導多次元DeepONet
- Authors: Sunwoong Yang, Youngkyu Lee, Namwoo Kang,
- Abstract要約: 本研究では,効率的な時間的流れ場予測のための多要素深部演算ネットワーク(DeepONet)フレームワークを提案する。
フレームワークの効率性と正確性を改善するために、いくつかの重要なイノベーションを紹介します。
- 参考スコア(独自算出の注目度): 1.474723404975345
- License:
- Abstract: This study presents an enhanced multi-fidelity deep operator network (DeepONet) framework for efficient spatio-temporal flow field prediction, with particular emphasis on practical scenarios where high-fidelity data is scarce. We introduce several key innovations to improve the framework's efficiency and accuracy. First, we enhance the DeepONet architecture by incorporating a merge network that enables more complex feature interactions between operator and coordinate spaces, achieving a 50.4% reduction in prediction error compared to traditional dot-product operations. We further optimize the architecture through temporal positional encoding and point-based sampling strategies, achieving a 7.57% improvement in prediction accuracy while reducing training time by 96% through efficient sampling and automatic mixed precision training. Building upon this foundation, we develop a transfer learning-based multi-fidelity framework that leverages knowledge from pre-trained low-fidelity models to guide high-fidelity predictions. Our approach freezes the pre-trained branch and trunk networks while making only the merge network trainable during high-fidelity training, preserving valuable low-fidelity representations while efficiently adapting to high-fidelity features. Through systematic investigation, we demonstrate that this fine-tuning strategy not only significantly outperforms linear probing and full-tuning alternatives but also surpasses conventional multi-fidelity frameworks by up to 76%, while achieving up to 43.7% improvement in prediction accuracy compared to single-fidelity training. The core contribution lies in our novel time-derivative guided sampling approach: it maintains prediction accuracy equivalent to models trained with the full dataset while requiring only 60% of the original high-fidelity samples.
- Abstract(参考訳): 本研究では,高忠実度データが不足する現実的なシナリオを中心に,効率的な時空間流場予測のための拡張多忠実深部演算ネットワーク(DeepONet)を提案する。
フレームワークの効率性と正確性を改善するために、いくつかの重要なイノベーションを紹介します。
まず、演算子と座標空間間のより複雑な特徴相互作用を可能にするマージネットワークを組み込むことでDeepONetアーキテクチャを強化し、従来のドット積演算と比較して予測誤差を50.4%削減する。
さらに、時間的位置エンコーディングと点ベースサンプリング戦略によりアーキテクチャを最適化し、効率のよいサンプリングと自動混合精度トレーニングにより、トレーニング時間を96%削減し、予測精度を7.57%向上させる。
この基盤を基盤として、事前学習された低忠実度モデルからの知識を活用して高忠実度予測を導出するトランスファーラーニングベースの多忠実度フレームワークを開発する。
提案手法は,高忠実度トレーニングにおいて,有意な低忠実度表現を保ちつつ,高忠実度特徴に適応しつつ,マージネットワークのみをトレーニング可能とし,事前学習した分岐ネットワークとトランクネットワークを凍結する。
系統的な調査を通じて、この微調整戦略は線形探索とフルチューニングの選択肢を著しく上回るだけでなく、従来のマルチ忠実度フレームワークを最大76%上回り、単一忠実度トレーニングよりも最大43.7%の精度で予測精度を向上することを示した。
従来の高忠実度サンプルの60%しか必要とせず、完全なデータセットでトレーニングされたモデルに匹敵する予測精度を維持します。
関連論文リスト
- Neural Conformal Control for Time Series Forecasting [54.96087475179419]
非定常環境における適応性を高める時系列のニューラルネットワーク共形予測手法を提案する。
提案手法は,ニューラルネットワークエンコーダを用いた補助的マルチビューデータを活用することにより,望ましい対象範囲を達成するために設計されたニューラルネットワークコントローラとして機能する。
予測間隔の整合性に優れたキャリブレーションを組み合わさった手法は, 適用範囲と確率的精度の大幅な向上を実証的に示す。
論文 参考訳(メタデータ) (2024-12-24T03:56:25Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFTは、モデルのパラメータの大部分を凍結し、新しく導入されたプロンプトとアダプタの調整に集中する微調整戦略である。
実験の結果,Forecast-PEFTは動作予測タスクにおいて従来のフルチューニング手法よりも優れていた。
Forecast-FTは予測性能をさらに改善し、従来のベースライン法よりも最大9.6%向上した。
論文 参考訳(メタデータ) (2024-07-28T19:18:59Z) - Predicting Traffic Flow with Federated Learning and Graph Neural with Asynchronous Computations Network [0.0]
我々はFLAGCN(Federated Learning and Asynchronous Graph Convolutional Networks)と呼ばれる新しいディープラーニング手法を提案する。
本フレームワークでは,リアルタイムトラフィックフロー予測の精度と効率を高めるために,非同期グラフ畳み込みネットワークとフェデレーション学習の原理を取り入れている。
論文 参考訳(メタデータ) (2024-01-05T09:36:42Z) - FedDCT: A Dynamic Cross-Tier Federated Learning Framework in Wireless Networks [5.914766366715661]
フェデレートラーニング(FL)は、ローカルデータを公開せずにデバイス全体でグローバルモデルをトレーニングする。
無線ネットワークにおけるリソースの不均一性と避けられないストラグラーは、FLトレーニングの効率と正確性に大きな影響を与えます。
動的クロスティアフェデレーション学習フレームワーク(FedDCT)を提案する。
論文 参考訳(メタデータ) (2023-07-10T08:54:07Z) - Multi-fidelity prediction of fluid flow and temperature field based on
transfer learning using Fourier Neural Operator [10.104417481736833]
本研究では,フーリエニューラル演算子に基づく新しい多要素学習手法を提案する。
トランスファーラーニングパラダイムの下では、豊富な低忠実度データと限られた高忠実度データを使用する。
提案した多忠実度モデルの精度を検証するために,3つの典型的な流体および温度予測問題を選択する。
論文 参考訳(メタデータ) (2023-04-14T07:46:03Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - An Empirical Study on Data Leakage and Generalizability of Link
Prediction Models for Issues and Commits [7.061740334417124]
LinkFormerは既存の予測の精度を保存し、改善する。
実世界のシナリオを効果的にシミュレートするためには、研究者はデータの時間的流れを維持する必要がある。
論文 参考訳(メタデータ) (2022-11-01T10:54:26Z) - Confidence-Nets: A Step Towards better Prediction Intervals for
regression Neural Networks on small datasets [0.0]
そこで本研究では,予測の不確かさを推定し,精度を向上し,予測変動の間隔を与えるアンサンブル手法を提案する。
提案手法は様々なデータセットで検証され,ニューラルネットワークモデルの性能が大幅に向上した。
論文 参考訳(メタデータ) (2022-10-31T06:38:40Z) - FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning
Using Shared Data on the Server [64.94942635929284]
フェデレーテッド・ラーニング(FL)は2つの重要な課題、すなわち限られた計算資源と訓練効率の低下に悩まされている。
本稿では,サーバ上の不感なデータとエッジデバイスの分散データを利用する新しいFLフレームワークであるFedDUAPを提案する。
提案するFLモデルであるFedDUAPは,2つの元の手法を統合することで,精度(最大4.8%),効率(最大2.8倍),計算コスト(最大61.9%)において,ベースラインアプローチを著しく上回っている。
論文 参考訳(メタデータ) (2022-04-25T10:00:00Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
我々は、非教師付きデータ拡張を定義するために、潜在空間における摂動が利用できることを示す。
トレーニングを通して分類器に適応する潜伏性対向性摂動が最も効果的であることが判明した。
論文 参考訳(メタデータ) (2021-08-18T03:20:00Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。