論文の概要: Data-Efficient Deep Operator Network for Unsteady Flow: A Multi-Fidelity Approach with Physics-Guided Subsampling
- arxiv url: http://arxiv.org/abs/2503.17941v2
- Date: Thu, 17 Jul 2025 07:01:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-18 13:45:37.391083
- Title: Data-Efficient Deep Operator Network for Unsteady Flow: A Multi-Fidelity Approach with Physics-Guided Subsampling
- Title(参考訳): 非定常流れに対するデータ効率の良い深部演算子ネットワーク:物理誘導サブサンプリングによる多面的アプローチ
- Authors: Sunwoong Yang, Youngkyu Lee, Namwoo Kang,
- Abstract要約: 本研究では,高忠実度データが不足している場合の時空間流速予測のために,多忠実度Deep Operator Network (DeepONet) を改良したフレームワークを提案する。
- 参考スコア(独自算出の注目度): 1.474723404975345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents an enhanced multi-fidelity Deep Operator Network (DeepONet) framework for efficient spatio-temporal flow field prediction when high-fidelity data is scarce. Key innovations include: a merge network replacing traditional dot-product operations, achieving 50.4% reduction in prediction error and 7.57% accuracy improvement while reducing training time by 96%; a transfer learning multi-fidelity approach that freezes pre-trained low-fidelity networks while making only the merge network trainable, outperforming alternatives by up to 76% and achieving 43.7% better accuracy than single-fidelity training; and a physics-guided subsampling method that strategically selects high-fidelity training points based on temporal dynamics, reducing high-fidelity sample requirements by 40% while maintaining comparable accuracy. Comprehensive experiments across multiple resolutions and datasets demonstrate the framework's ability to significantly reduce required high-fidelity dataset size while maintaining predictive accuracy, with consistent superior performance against conventional benchmarks.
- Abstract(参考訳): 本研究では,高忠実度データが少ない場合の時空間流場予測を効率的に行うために,多忠実度Deep Operator Network (DeepONet) を改良したフレームワークを提案する。
主な革新としては、従来のドット製品操作を置き換えるマージネットワーク、予測エラーの50.4%削減、トレーニング時間を96%削減した7.57%の精度向上、事前訓練された低忠実ネットワークを凍結するトランスファーラーニングマルチファイダリティアプローチ、単一忠実トレーニングよりも最大76%向上し43.7%の精度を達成したマージネットワーク、時間的ダイナミクスに基づいた高忠実度トレーニングポイントを戦略的に選択した物理誘導サブサンプリング、高忠実度サンプル要求を40%削減した物理誘導サブサンプリングなどがある。
複数の解像度とデータセットにわたる総合的な実験は、従来のベンチマークに対して一貫したパフォーマンスで予測精度を維持しながら、要求される高忠実度データセットサイズを著しく削減するフレームワークの能力を示している。
関連論文リスト
- Hybrid Quantum Recurrent Neural Network For Remaining Useful Life Prediction [67.410870290301]
本稿では、量子長短期記憶層と古典的な高密度層を組み合わせたハイブリッド量子リカレントニューラルネットワークフレームワークを提案する。
実験の結果、トレーニング可能なパラメータが少ないにもかかわらず、Hybrid Quantum Recurrent Neural Networkは、リカレントニューラルネットワークよりも最大5%改善できることがわかった。
論文 参考訳(メタデータ) (2025-04-29T14:41:41Z) - Reducing Communication Overhead in Federated Learning for Network Anomaly Detection with Adaptive Client Selection [0.0]
連合学習(FL)における通信オーバーヘッドは,ネットワーク異常検出システムにおいて重要な課題となる。
本稿では,バッチサイズ最適化,クライアント選択,非同期更新を組み合わせた適応FLフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-19T17:29:21Z) - SPEQ: Offline Stabilization Phases for Efficient Q-Learning in High Update-To-Data Ratio Reinforcement Learning [51.10866035483686]
強化学習(RL)における高アップデート・トゥ・データ(UTD)比のアルゴリズムは、サンプル効率を改善するが、高い計算コストを伴い、現実世界のスケーラビリティを制限している。
我々は、低UTDオンライントレーニングと周期的オフライン安定化フェーズを組み合わせたRLアルゴリズムである、効率的なQ-Learningのためのオフライン安定化フェーズ(SPEQ)を提案する。
これらのフェーズでは、Q-関数は固定されたリプレイバッファ上で高いUTD比で微調整され、サブ最適データの冗長な更新が削減される。
論文 参考訳(メタデータ) (2025-01-15T09:04:19Z) - Neural Conformal Control for Time Series Forecasting [54.96087475179419]
非定常環境における適応性を高める時系列のニューラルネットワーク共形予測手法を提案する。
提案手法は,ニューラルネットワークエンコーダを用いた補助的マルチビューデータを活用することにより,望ましい対象範囲を達成するために設計されたニューラルネットワークコントローラとして機能する。
予測間隔の整合性に優れたキャリブレーションを組み合わさった手法は, 適用範囲と確率的精度の大幅な向上を実証的に示す。
論文 参考訳(メタデータ) (2024-12-24T03:56:25Z) - Efficient Gravitational Wave Parameter Estimation via Knowledge Distillation: A ResNet1D-IAF Approach [2.4184866684341473]
本研究では,重力波解析における計算効率を高めるため,知識蒸留技術を用いた新しい手法を提案する。
我々はResNet1Dと逆自己回帰フロー(Inverse Autoregressive Flow, IAF)アーキテクチャを組み合わせたフレームワークを開発し、複雑な教師モデルからの知識をより軽い学生モデルに伝達する。
実験の結果,教師モデルの4.09と比較すると,学生モデルは最適構成(40,100,0.75)で3.70の検証損失を達成し,パラメータの数を43%削減した。
論文 参考訳(メタデータ) (2024-12-11T03:56:46Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFTは、モデルのパラメータの大部分を凍結し、新しく導入されたプロンプトとアダプタの調整に集中する微調整戦略である。
実験の結果,Forecast-PEFTは動作予測タスクにおいて従来のフルチューニング手法よりも優れていた。
Forecast-FTは予測性能をさらに改善し、従来のベースライン法よりも最大9.6%向上した。
論文 参考訳(メタデータ) (2024-07-28T19:18:59Z) - Practical multi-fidelity machine learning: fusion of deterministic and Bayesian models [0.34592277400656235]
マルチフィデリティ機械学習手法は、少ないリソース集約型高フィデリティデータと、豊富なが精度の低い低フィデリティデータを統合する。
低次元領域と高次元領域にまたがる問題に対する実用的多面性戦略を提案する。
論文 参考訳(メタデータ) (2024-07-21T10:40:50Z) - Synchronous Faithfulness Monitoring for Trustworthy Retrieval-Augmented Generation [96.78845113346809]
Retrieval-augmented Language Model (RALMs) は、知識集約型タスクにおいて、高い性能と幅広い適用性を示している。
本稿では,非偽文の検出に微細な復号力学を利用する軽量モニタであるSynCheckを提案する。
また、長文検索拡張生成のためのビームサーチによって導かれる忠実度指向の復号アルゴリズムであるFODを導入する。
論文 参考訳(メタデータ) (2024-06-19T16:42:57Z) - Towards Calibrated Deep Clustering Network [60.71776081164377]
ディープクラスタリングでは、特定のクラスタに属するサンプルに対する推定信頼度はその実際の予測精度を大きく上回る。
推定された信頼度と実際の精度を効果的にキャリブレーションできる新しいデュアルヘッド(キャリブレーションヘッドとクラスタリングヘッド)深層クラスタリングモデルを提案する。
大規模実験により, 提案手法は, 最先端の深層クラスタリング手法を10倍に越えるだけでなく, クラスタリング精度も大幅に向上した。
論文 参考訳(メタデータ) (2024-03-04T11:23:40Z) - Predicting Traffic Flow with Federated Learning and Graph Neural with Asynchronous Computations Network [0.0]
我々はFLAGCN(Federated Learning and Asynchronous Graph Convolutional Networks)と呼ばれる新しいディープラーニング手法を提案する。
本フレームワークでは,リアルタイムトラフィックフロー予測の精度と効率を高めるために,非同期グラフ畳み込みネットワークとフェデレーション学習の原理を取り入れている。
論文 参考訳(メタデータ) (2024-01-05T09:36:42Z) - FedDCT: A Dynamic Cross-Tier Federated Learning Framework in Wireless Networks [5.914766366715661]
フェデレートラーニング(FL)は、ローカルデータを公開せずにデバイス全体でグローバルモデルをトレーニングする。
無線ネットワークにおけるリソースの不均一性と避けられないストラグラーは、FLトレーニングの効率と正確性に大きな影響を与えます。
動的クロスティアフェデレーション学習フレームワーク(FedDCT)を提案する。
論文 参考訳(メタデータ) (2023-07-10T08:54:07Z) - Multi-fidelity prediction of fluid flow and temperature field based on
transfer learning using Fourier Neural Operator [10.104417481736833]
本研究では,フーリエニューラル演算子に基づく新しい多要素学習手法を提案する。
トランスファーラーニングパラダイムの下では、豊富な低忠実度データと限られた高忠実度データを使用する。
提案した多忠実度モデルの精度を検証するために,3つの典型的な流体および温度予測問題を選択する。
論文 参考訳(メタデータ) (2023-04-14T07:46:03Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics
in Industrial Metaverse [49.1501082763252]
本稿では,新しい産業メタバースに実用FLを取り入れたHFEDMSを提案する。
動的グルーピングとトレーニングモード変換によってデータの均一性を低下させる。
そして、圧縮された履歴データセマンティクスを融合することで、忘れられた知識を補う。
ストリームされた非I.d.FEMNISTデータセットに対して,368個のシミュレーションデバイスを用いて実験を行った。
論文 参考訳(メタデータ) (2022-11-07T04:33:24Z) - An Empirical Study on Data Leakage and Generalizability of Link
Prediction Models for Issues and Commits [7.061740334417124]
LinkFormerは既存の予測の精度を保存し、改善する。
実世界のシナリオを効果的にシミュレートするためには、研究者はデータの時間的流れを維持する必要がある。
論文 参考訳(メタデータ) (2022-11-01T10:54:26Z) - Confidence-Nets: A Step Towards better Prediction Intervals for
regression Neural Networks on small datasets [0.0]
そこで本研究では,予測の不確かさを推定し,精度を向上し,予測変動の間隔を与えるアンサンブル手法を提案する。
提案手法は様々なデータセットで検証され,ニューラルネットワークモデルの性能が大幅に向上した。
論文 参考訳(メタデータ) (2022-10-31T06:38:40Z) - Block-Wise Dynamic-Precision Neural Network Training Acceleration via
Online Quantization Sensitivity Analytics [8.373265629267257]
ブロックワイドな動的精度ニューラルネットワークトレーニングフレームワークDYNASTYを提案する。
DYNASTYは、高速オンライン分析を通じて正確なデータ感度情報を提供し、適応ビット幅マップジェネレータによる安定したトレーニング収束を維持する。
8ビットの量子化ベースラインと比較して、DYNASTYは5.1タイムのスピードアップと4.7タイムのエネルギー消費削減を実現し、精度の低下やハードウェアのオーバーヘッドは無視できる。
論文 参考訳(メタデータ) (2022-10-31T03:54:16Z) - FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning
Using Shared Data on the Server [64.94942635929284]
フェデレーテッド・ラーニング(FL)は2つの重要な課題、すなわち限られた計算資源と訓練効率の低下に悩まされている。
本稿では,サーバ上の不感なデータとエッジデバイスの分散データを利用する新しいFLフレームワークであるFedDUAPを提案する。
提案するFLモデルであるFedDUAPは,2つの元の手法を統合することで,精度(最大4.8%),効率(最大2.8倍),計算コスト(最大61.9%)において,ベースラインアプローチを著しく上回っている。
論文 参考訳(メタデータ) (2022-04-25T10:00:00Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
我々は、非教師付きデータ拡張を定義するために、潜在空間における摂動が利用できることを示す。
トレーニングを通して分類器に適応する潜伏性対向性摂動が最も効果的であることが判明した。
論文 参考訳(メタデータ) (2021-08-18T03:20:00Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning(FL)は、分散クライアント間で効果的な機械学習モデルをトレーニングするための有望なツールとなっている。
しかし、低品質のモデルは信頼性の低いクライアントによってアグリゲータサーバにアップロードすることができ、劣化やトレーニングの崩壊につながる。
クライアントの信頼できない振る舞いをモデル化し、このようなセキュリティリスクを軽減するための防御メカニズムを提案する。
論文 参考訳(メタデータ) (2021-05-10T08:02:27Z) - FracTrain: Fractionally Squeezing Bit Savings Both Temporally and Spatially for Efficient DNN Training [62.932299614630985]
本稿では, アクティベーション, ウェイト, 勾配の精度を徐々に向上させる, プログレッシブ分数量子化を統合したFracTrainを提案する。
FracTrainはDNNトレーニングの計算コストとハードウェア量子化エネルギー/レイテンシを削減し、同等以上の精度(-0.12%+1.87%)を達成する。
論文 参考訳(メタデータ) (2020-12-24T05:24:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。