論文の概要: PhysTwin: Physics-Informed Reconstruction and Simulation of Deformable Objects from Videos
- arxiv url: http://arxiv.org/abs/2503.17973v1
- Date: Sun, 23 Mar 2025 07:49:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:37:35.395626
- Title: PhysTwin: Physics-Informed Reconstruction and Simulation of Deformable Objects from Videos
- Title(参考訳): PhysTwin: 物理インフォームド・コンストラクションとビデオからの変形可能な物体のシミュレーション
- Authors: Hanxiao Jiang, Hao-Yu Hsu, Kaifeng Zhang, Hsin-Ni Yu, Shenlong Wang, Yunzhu Li,
- Abstract要約: PhysTwinは、対話中の動的オブジェクトのスパースビデオを使用して、写真と物理的にリアルでリアルタイムなインタラクティブなレプリカを生成する新しいフレームワークである。
提案手法は,(1)現実的な物理シミュレーションのためにバネ質量モデルを組み合わせた物理インフォームド表現,および幾何学のための生成形状モデル,およびレンダリングのためのガウススプラットである。
本手法は,視覚的知覚の手がかりと逆物理の枠組みを統合し,部分的,隠蔽的,限定的な視点からでも高忠実度復元を可能にする。
- 参考スコア(独自算出の注目度): 21.441062722848265
- License:
- Abstract: Creating a physical digital twin of a real-world object has immense potential in robotics, content creation, and XR. In this paper, we present PhysTwin, a novel framework that uses sparse videos of dynamic objects under interaction to produce a photo- and physically realistic, real-time interactive virtual replica. Our approach centers on two key components: (1) a physics-informed representation that combines spring-mass models for realistic physical simulation, generative shape models for geometry, and Gaussian splats for rendering; and (2) a novel multi-stage, optimization-based inverse modeling framework that reconstructs complete geometry, infers dense physical properties, and replicates realistic appearance from videos. Our method integrates an inverse physics framework with visual perception cues, enabling high-fidelity reconstruction even from partial, occluded, and limited viewpoints. PhysTwin supports modeling various deformable objects, including ropes, stuffed animals, cloth, and delivery packages. Experiments show that PhysTwin outperforms competing methods in reconstruction, rendering, future prediction, and simulation under novel interactions. We further demonstrate its applications in interactive real-time simulation and model-based robotic motion planning.
- Abstract(参考訳): 現実世界の物体の物理的デジタル双対を作ることは、ロボット工学、コンテンツ生成、そしてXRにおいて大きな可能性を秘めている。
本稿では,対話中の動的オブジェクトのスパースビデオを用いて,写真と物理的にリアルにリアルタイムにインタラクティブな仮想レプリカを生成する新しいフレームワークであるPhysTwinを提案する。
提案手法は,(1)現実的な物理シミュレーションのためのバネ質量モデル,幾何学のための生成形状モデル,およびレンダリングのためのガウススプラットを組み合わせた物理インフォームド表現,(2)完全な幾何学を再構築し,密度の高い物理特性を推測し,映像から現実的な外観を再現する新しい多段階最適化ベースの逆モデリングフレームワークである。
本手法は,視覚的知覚の手がかりと逆物理の枠組みを統合し,部分的,隠蔽的,限定的な視点からでも高忠実度復元を可能にする。
PhysTwinは、ロープ、ぬいぐるみ、布、配送パッケージなど、さまざまな変形可能なオブジェクトのモデリングをサポートする。
実験により、PhysTwinは、新しい相互作用の下での復元、レンダリング、将来の予測、シミュレーションにおいて競合する手法より優れていることが示された。
さらに,対話型リアルタイムシミュレーションとモデルに基づくロボット動作計画において,その応用を実証する。
関連論文リスト
- PhysMotion: Physics-Grounded Dynamics From a Single Image [24.096925413047217]
本稿では、物理シミュレーションを利用した新しいフレームワークであるPhysMotionを紹介し、一つの画像と入力条件から生成された中間3次元表現をガイドする。
我々のアプローチは、従来のデータ駆動生成モデルの限界に対処し、より一貫した物理的に妥当な動きをもたらす。
論文 参考訳(メタデータ) (2024-11-26T07:59:11Z) - Learned Neural Physics Simulation for Articulated 3D Human Pose Reconstruction [30.51621591645056]
本稿では,接触を伴う人間の関節運動の力学をモデル化するための新しいニューラルネットワーク手法であるLARPを提案する。
私たちのニューラルアーキテクチャは、従来の物理シミュレータで一般的に見られる機能をサポートします。
LARPの価値を実証するために、既存のビデオベース再構成フレームワークにおける古典的非微分可能シミュレータの状態のドロップイン代替として使用します。
論文 参考訳(メタデータ) (2024-10-15T19:42:45Z) - PhysGen: Rigid-Body Physics-Grounded Image-to-Video Generation [29.831214435147583]
本稿では,新しい画像対ビデオ生成法であるPhysGenを提案する。
リアルで、物理的にもっともらしく、時間的に一貫したビデオを生み出す。
我々の重要な洞察は、モデルに基づく物理シミュレーションとデータ駆動のビデオ生成プロセスを統合することである。
論文 参考訳(メタデータ) (2024-09-27T17:59:57Z) - Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
本稿では,物理シミュレーションのための伝達学習フレームワークである潜在直観物理学を紹介する。
単一の3Dビデオから流体の隠れた性質を推測し、新しいシーンで観察された流体をシミュレートすることができる。
我々は,本モデルの有効性を3つの方法で検証する: (i) 学習されたビジュアルワールド物理を用いた新しいシーンシミュレーション, (ii) 観測された流体力学の将来予測, (iii) 教師付き粒子シミュレーション。
論文 参考訳(メタデータ) (2024-06-18T16:37:44Z) - Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
ビデオ拡散モデルを用いて3Dオブジェクトの様々な物理的特性を学習する新しい手法である textbfPhysics3D を提案する。
本手法では,粘弾性材料モデルに基づく高一般化物理シミュレーションシステムを設計する。
弾性材料とプラスチック材料の両方を用いて, 本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-06T17:59:47Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
PHYRECONは、微分可能なレンダリングと微分可能な物理シミュレーションの両方を利用して暗黙的な表面表現を学習する最初のアプローチである。
この設計の中心は、SDFに基づく暗黙の表現と明示的な表面点の間の効率的な変換である。
また,物理シミュレータの安定性も向上し,全データセットに対して少なくとも40%の改善が得られた。
論文 参考訳(メタデータ) (2024-04-25T15:06:58Z) - PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation [62.53760963292465]
PhysDreamerは物理に基づくアプローチで、静的な3Dオブジェクトにインタラクティブなダイナミクスを与える。
本稿では, 弾性物体の多様な例について考察し, ユーザスタディを通じて合成された相互作用の現実性を評価する。
論文 参考訳(メタデータ) (2024-04-19T17:41:05Z) - Differentiable Dynamics for Articulated 3d Human Motion Reconstruction [29.683633237503116]
DiffPhyは、映像から3次元の人間の動きを再現する物理モデルである。
モノクロ映像から物理的に可視な3次元動作を正確に再現できることを実証し,本モデルの有効性を検証した。
論文 参考訳(メタデータ) (2022-05-24T17:58:37Z) - Dynamic Visual Reasoning by Learning Differentiable Physics Models from
Video and Language [92.7638697243969]
視覚概念を協調的に学習し,映像や言語から物体の物理モデルを推定する統合フレームワークを提案する。
これは視覚認識モジュール、概念学習モジュール、微分可能な物理エンジンの3つのコンポーネントをシームレスに統合することで実現される。
論文 参考訳(メタデータ) (2021-10-28T17:59:13Z) - GeoSim: Photorealistic Image Simulation with Geometry-Aware Composition [81.24107630746508]
GeoSimは、新しい都市の運転シーンを合成するジオメトリ認識の画像合成プロセスです。
まず、センサーデータからリアルな形状と外観の両方を備えた多様な3Dオブジェクトのバンクを構築します。
得られた合成画像は、フォトリアリズム、トラフィック認識、幾何学的一貫性があり、画像シミュレーションが複雑なユースケースにスケールできる。
論文 参考訳(メタデータ) (2021-01-16T23:00:33Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
人工システムの鍵となる能力は、オブジェクト間の物理的相互作用を理解し、状況の将来的な結果を予測することである。
この能力は直感的な物理学と呼ばれ、近年注目されており、ビデオシーケンスからこれらの物理規則を学ぶためのいくつかの方法が提案されている。
論文 参考訳(メタデータ) (2020-04-30T19:35:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。