Scalable physics-informed deep generative model for solving forward and inverse stochastic differential equations
- URL: http://arxiv.org/abs/2503.18012v1
- Date: Sun, 23 Mar 2025 10:19:26 GMT
- Title: Scalable physics-informed deep generative model for solving forward and inverse stochastic differential equations
- Authors: Shaoqian Zhou, Wen You, Ling Guo, Xuhui Meng,
- Abstract summary: A physics-informed deep generative model (sPI-GeM) is capable of solving SDE problems with both high-dimensional and spatial space.<n>The sPI-GeM addresses the scalability in the spatial space in a similar way as in the widely used dimensionality reduction technique.
- Score: 0.9419294043578184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed deep learning approaches have been developed to solve forward and inverse stochastic differential equation (SDE) problems with high-dimensional stochastic space. However, the existing deep learning models have difficulties solving SDEs with high-dimensional spatial space. In the present study, we propose a scalable physics-informed deep generative model (sPI-GeM), which is capable of solving SDE problems with both high-dimensional stochastic and spatial space. The sPI-GeM consists of two deep learning models, i.e., (1) physics-informed basis networks (PI-BasisNet), which are used to learn the basis functions as well as the coefficients given data on a certain stochastic process or random field, and (2) physics-informed deep generative model (PI-GeM), which learns the distribution over the coefficients obtained from the PI-BasisNet. The new samples for the learned stochastic process can then be obtained using the inner product between the output of the generator and the basis functions from the trained PI-BasisNet. The sPI-GeM addresses the scalability in the spatial space in a similar way as in the widely used dimensionality reduction technique, i.e., principal component analysis (PCA). A series of numerical experiments, including approximation of Gaussian and non-Gaussian stochastic processes, forward and inverse SDE problems, are performed to demonstrate the accuracy of the proposed model. Furthermore, we also show the scalability of the sPI-GeM in both the stochastic and spatial space using an example of a forward SDE problem with 38- and 20-dimension stochastic and spatial space, respectively.
Related papers
- Foundation Inference Models for Stochastic Differential Equations: A Transformer-based Approach for Zero-shot Function Estimation [3.005912045854039]
We introduce FIM-SDE (Foundation Inference Model for SDEs), a transformer-based recognition model capable of performing accurate zero-shot estimation of the drift and diffusion functions of SDEs.
We demonstrate that one and the same (pretrained) FIM-SDE achieves robust zero-shot function estimation across a wide range of synthetic and real-world processes.
arXiv Detail & Related papers (2025-02-26T11:04:02Z) - Mechanistic PDE Networks for Discovery of Governing Equations [52.492158106791365]
We present Mechanistic PDE Networks, a model for discovery of partial differential equations from data.<n>The represented PDEs are then solved and decoded for specific tasks.<n>We develop a native, GPU-capable, parallel, sparse, and differentiable multigrid solver specialized for linear partial differential equations.
arXiv Detail & Related papers (2025-02-25T17:21:44Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Approximation of Solution Operators for High-dimensional PDEs [2.3076986663832044]
We propose a finite-dimensional control-based method to approximate solution operators for evolutional partial differential equations.
Results are presented for several high-dimensional PDEs, including real-world applications to solving Hamilton-Jacobi-Bellman equations.
arXiv Detail & Related papers (2024-01-18T21:45:09Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.
This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Random Grid Neural Processes for Parametric Partial Differential
Equations [5.244037702157957]
We introduce a new class of spatially probabilistic physics and data informed deep latent models for PDEs.
We solve forward and inverse problems for parametric PDEs in a way that leads to the construction of Gaussian process models of solution fields.
We show how to incorporate noisy data in a principled manner into our physics informed model to improve predictions for problems where data may be available.
arXiv Detail & Related papers (2023-01-26T11:30:56Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Learning Functional Priors and Posteriors from Data and Physics [3.537267195871802]
We develop a new framework based on deep neural networks to be able to extrapolate in space-time using historical data.
We employ the physics-informed Generative Adversarial Networks (PI-GAN) to learn a functional prior.
At the second stage, we employ the Hamiltonian Monte Carlo (HMC) method to estimate the posterior in the latent space of PI-GANs.
arXiv Detail & Related papers (2021-06-08T03:03:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.