Strongly Electromechanical Coupled Phononic Waveguides in Aluminum Scandium Nitride on Silicon Carbide
- URL: http://arxiv.org/abs/2503.18113v1
- Date: Sun, 23 Mar 2025 15:38:01 GMT
- Title: Strongly Electromechanical Coupled Phononic Waveguides in Aluminum Scandium Nitride on Silicon Carbide
- Authors: Yuanchen Deng, Dalton Anderson, Xingyu Du, Will Roberts, Michael Miller, Brandon Smith, Lisa Hackett, Troy Olsson, Matt Eichenfield,
- Abstract summary: Two-dimensionally confined waveguide systems offer significant advantages in terms of density of phononic circuit components.<n>One such material system for generating and guiding phonons at gigahertz frequencies is AlScN on SiC.<n>We present a 2D-confined phononic waveguide architecture in AlScN on SiC with strongly electromechanically coupled modes.
- Score: 0.37450483494611664
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Guided phonons have become an increasingly important platform for classical and quantum information processing. While conventional surface acoustic wave systems are typically only guided in the vertical direction, two-dimensionally confined waveguide systems offer significant advantages in terms of density of phononic circuit components and much higher intensities of strain and piezoelectric fields, which make them promising candidates for advancing acoustoelectric and quantum phononic applications. One such material system for generating and guiding phonons at gigahertz frequencies is AlScN on SiC, which can be synthesized by sputter depositing AlScN directly onto SiC wafers. The AlScN on SiC platform allows for tightly vertically confined acoustic modes with high electromechanical coupling, high speed of sound, and simple fabrication of strip and rib waveguides. Until now, this system has only been studied as a slab waveguide platform, i.e., without any lateral waveguiding. Here, we present a 2D-confined phononic waveguide architecture in AlScN on SiC with strongly electromechanically coupled modes that could serve as a platform for phononic routing, power-efficient active and nonlinear phononic devices such as amplifiers, mixers, and oscillators, as well as for interacting with quantum systems such as vacancy centers, charge carriers, photons, and spins. We study two distinct gigahertz frequency waveguide mode families using impedance matched interdigital transducers and characterize their electromechanical coupling and propagation losses. Additionally, we analyze how these waveguides could interact with various important quantum and classical systems that can be either embedded in SiC or heterogeneously integrated on the surface.
Related papers
- Ab-Initio Calculations of Nonlinear Susceptibility and Multi-Phonon Mixing Processes in a 2DEG-Piezoelectric Heterostructure [41.94295877935867]
Solid-state elastic-wave phonons are a promising platform for a wide range of quantum information applications.
We propose a general architecture using piezoelectric-semiconductor heterostructures.
We show that, for this system, the strong third-order nonlinearity could enable single-phonon Kerr shift in an acoustic cavity.
arXiv Detail & Related papers (2024-02-01T03:34:41Z) - Programmable high-dimensional Hamiltonian in a photonic waveguide array [2.784440641237062]
We present a programmable waveguide array in which the Hamiltonian terms can be electro-optically tuned to implement various Hamiltonian continuous-time evolutions on a single device.
Our architecture's micron-scale local electric fields independently control waveguide coupling coefficients and effective indices.
Our platform can enable the study of multiple condensed matter quantum dynamics with a single device.
arXiv Detail & Related papers (2023-11-25T07:32:39Z) - Machine Learning Extreme Acoustic Non-reciprocity in a Linear Waveguide
with Multiple Nonlinear Asymmetric Gates [68.8204255655161]
This work is a study of acoustic non-reciprocity exhibited by a passive one-dimensional linear waveguide incorporating two local strongly nonlinear, asymmetric gates.
The maximum transmissibility reaches as much as 40%, and the transmitted energy from upstream to downstream varies up to nine orders of magnitude, depending on the direction of wave propagation.
arXiv Detail & Related papers (2023-02-02T17:28:04Z) - Surface Acoustic Wave Cavity Optomechanics with WSe$_2$ Single Photon
Emitters [0.0]
Surface acoustic waves (SAWs) are a versatile tool for coherently interfacing with a variety of solid-state quantum systems.
Here, we demonstrate SAW cavity optomechanics with quantum emitters in 2D materials.
We leverage the large anisotropic strain from the SAW to modulate the excitonic fine-structure splitting on a nanosecond timescale.
arXiv Detail & Related papers (2022-11-28T22:36:52Z) - Picosecond Pulsed Squeezing in Thin-Film Lithium Niobate Strip-Loaded
Waveguides at Telecommunication Wavelengths [52.77024349608834]
We show quadrature squeezing of picosecond pulses in a thin-film lithium niobate strip-loaded waveguide.
This work highlights the potential of the strip-loaded waveguide platform for broadband squeezing applications.
arXiv Detail & Related papers (2022-04-12T10:42:19Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Proposal for a quantum traveling Brillouin resonator [0.0]
We propose an on-chip liquid based Brillouin system that is predicted to exhibit ultra-high coherent phonon-photon coupling.
The system is comprised of a silicon-based "slot" waveguide filled with superfluid helium.
Such devices may enable applications ranging from ultra-sensitive superfluid-based gyroscopes, to non-reciprocal optical circuits.
arXiv Detail & Related papers (2020-06-08T08:13:00Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Quantum electrodynamics in a topological waveguide [47.187609203210705]
In this work we investigate the properties of superconducting qubits coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model.
We explore topologically-induced properties of qubits coupled to such a waveguide, ranging from the formation of directional qubit-photon bound states to topology-dependent cooperative radiation effects.
arXiv Detail & Related papers (2020-05-08T00:22:17Z) - Acoustic diamond resonators with ultra-small mode volumes [0.0]
We propose a novel design for a versatile diamond QAD cavity operating at GHz, exhibiting effective mode volumes of about $10-4lambda3$.
Our phononic crystal waveguide cavity implements a non-resonant analogue of the optical lightning-rod effect to localize the energy of an acoustic mode into a deeply-subwavelength volume.
This architecture can be readily translated towards setup with multiple cavities in one- or two-dimensional phononic crystals, and the underlying non-resonant localization mechanism will pave the way to further enhance optoacoustic coupling in phoxonic crystal cavities.
arXiv Detail & Related papers (2020-03-03T23:34:00Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.