Causality-Aware Next Location Prediction Framework based on Human Mobility Stratification
- URL: http://arxiv.org/abs/2503.18179v1
- Date: Sun, 23 Mar 2025 19:30:24 GMT
- Title: Causality-Aware Next Location Prediction Framework based on Human Mobility Stratification
- Authors: Xiaojie Yang, Zipei Fan, Hangli Ge, Takashi Michikata, Ryosuke Shibasaki, Noboru Koshizuka,
- Abstract summary: This study introduces a causality-aware framework for next location prediction, focusing on human mobility for travel patterns.<n>The proposed framework is designed as a plug-and-play module that integrates multiple next location prediction paradigms.
- Score: 8.617901269321218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human mobility data are fused with multiple travel patterns and hidden spatiotemporal patterns are extracted by integrating user, location, and time information to improve next location prediction accuracy. In existing next location prediction methods, different causal relationships that result from patterns in human mobility data are ignored, which leads to confounding information that can have a negative effect on predictions. Therefore, this study introduces a causality-aware framework for next location prediction, focusing on human mobility stratification for travel patterns. In our research, a novel causal graph is developed that describes the relationships between various input variables. We use counterfactuals to enhance the indirect effects in our causal graph for specific travel patterns: non-anchor targeted travels. The proposed framework is designed as a plug-and-play module that integrates multiple next location prediction paradigms. We tested our proposed framework using several state-of-the-art models and human mobility datasets, and the results reveal that the proposed module improves the prediction performance. In addition, we provide results from the ablation study and quantitative study to demonstrate the soundness of our causal graph and its ability to further enhance the interpretability of the current next location prediction models.
Related papers
- JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals.
Our approach locally modulates the saliency predictions by combining the learned temporal maps.
Our code will be publicly available on GitHub.
arXiv Detail & Related papers (2023-01-05T22:10:16Z) - Context-aware multi-head self-attentional neural network model for next
location prediction [19.640761373993417]
We utilize a multi-head self-attentional (A) neural network that learns location patterns from historical location visits.
We demonstrate that proposed the model outperforms other state-of-the-art prediction models.
We believe that the proposed model is vital for context-aware mobility prediction.
arXiv Detail & Related papers (2022-12-04T23:40:14Z) - How do you go where? Improving next location prediction by learning
travel mode information using transformers [6.003006906852134]
We propose a transformer decoder-based neural network to predict the next location an individual will visit based on historical locations, time, and travel modes.
In particular, the prediction of the next travel mode is designed as an auxiliary task to help guide the network's learning.
Our experiments show that the proposed method significantly outperforms other state-of-the-art next location prediction methods.
arXiv Detail & Related papers (2022-10-08T19:36:58Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - MobTCast: Leveraging Auxiliary Trajectory Forecasting for Human Mobility
Prediction [5.911865723926626]
We propose MobTCast, a Transformer-based context-aware network for mobility prediction.
We explore the influence of four types of context in the mobility prediction: temporal, semantic, social and geographical contexts.
In our experimental results, MobTCast outperforms other state-of-the-art next POI prediction methods.
arXiv Detail & Related papers (2021-09-30T09:42:15Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Online Co-movement Pattern Prediction in Mobility Data [1.5790464310310084]
We provide an accurate solution to the problem of Online Prediction of Co-movement patterns.
In order to calculate the accuracy of our solution, we propose a co-movement pattern similarity measure.
The accuracy of our solution is demonstrated experimentally over a real dataset from the maritime domain.
arXiv Detail & Related papers (2021-02-17T17:01:32Z) - Individual Mobility Prediction: An Interpretable Activity-based Hidden
Markov Approach [6.1938383008964495]
This study develops an activity-based modeling framework for individual mobility prediction.
We show that the proposed model can achieve similar prediction performance as the state-of-the-art long-term short-term memory (LSTM) model.
arXiv Detail & Related papers (2021-01-11T16:11:27Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
Causal discovery is at the core of human cognition.
We consider the task of causal discovery from videos in an end-to-end fashion without supervision on the ground-truth graph structure.
arXiv Detail & Related papers (2020-07-01T17:29:57Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
Reasoning over visual data is a desirable capability for robotics and vision-based applications.
In this paper, we present a framework on graph to uncover relationships in different objects in the scene for reasoning about pedestrian intent.
Pedestrian intent, defined as the future action of crossing or not-crossing the street, is a very crucial piece of information for autonomous vehicles.
arXiv Detail & Related papers (2020-02-20T18:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.