Severing Spurious Correlations with Data Pruning
- URL: http://arxiv.org/abs/2503.18258v2
- Date: Mon, 31 Mar 2025 18:11:52 GMT
- Title: Severing Spurious Correlations with Data Pruning
- Authors: Varun Mulchandani, Jung-Eun Kim,
- Abstract summary: Deep neural networks have been shown to learn and rely on spurious correlations present in the data that they are trained on.<n>Such correlations can cause these networks to malfunction when deployed in the real world, where these correlations may no longer hold.<n>We develop a novel data pruning technique that identifies and prunes small subsets of the training data that contain these samples.
- Score: 2.93774265594295
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural networks have been shown to learn and rely on spurious correlations present in the data that they are trained on. Reliance on such correlations can cause these networks to malfunction when deployed in the real world, where these correlations may no longer hold. To overcome the learning of and reliance on such correlations, recent studies propose approaches that yield promising results. These works, however, study settings where the strength of the spurious signal is significantly greater than that of the core, invariant signal, making it easier to detect the presence of spurious features in individual training samples and allow for further processing. In this paper, we identify new settings where the strength of the spurious signal is relatively weaker, making it difficult to detect any spurious information while continuing to have catastrophic consequences. We also discover that spurious correlations are learned primarily due to only a handful of all the samples containing the spurious feature and develop a novel data pruning technique that identifies and prunes small subsets of the training data that contain these samples. Our proposed technique does not require inferred domain knowledge, information regarding the sample-wise presence or nature of spurious information, or human intervention. Finally, we show that such data pruning attains state-of-the-art performance on previously studied settings where spurious information is identifiable.
Related papers
- Synthetic Simplicity: Unveiling Bias in Medical Data Augmentation [0.7499722271664144]
Synthetic data is becoming increasingly integral in data-scarce fields such as medical imaging.
downstream neural networks often exploit spurious distinctions between real and synthetic data when there is a strong correlation between the data source and the task label.
This exploitation manifests as textitsimplicity bias, where models overly rely on superficial features rather than genuine task-related complexities.
arXiv Detail & Related papers (2024-07-31T15:14:17Z) - Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Can Active Sampling Reduce Causal Confusion in Offline Reinforcement
Learning? [58.942118128503104]
Causal confusion is a phenomenon where an agent learns a policy that reflects imperfect spurious correlations in the data.
This phenomenon is particularly pronounced in domains such as robotics.
In this paper, we study causal confusion in offline reinforcement learning.
arXiv Detail & Related papers (2023-12-28T17:54:56Z) - Making Self-supervised Learning Robust to Spurious Correlation via
Learning-speed Aware Sampling [26.444935219428036]
Self-supervised learning (SSL) has emerged as a powerful technique for learning rich representations from unlabeled data.
In real-world settings, spurious correlations between some attributes (e.g. race, gender and age) and labels for downstream tasks often exist.
We propose a learning-speed aware SSL (LA-SSL) approach, in which we sample each training data with a probability that is inversely related to its learning speed.
arXiv Detail & Related papers (2023-11-27T22:52:45Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Decorrelate Irrelevant, Purify Relevant: Overcome Textual Spurious
Correlations from a Feature Perspective [47.10907370311025]
Natural language understanding (NLU) models tend to rely on spurious correlations (emphi.e., dataset bias) to achieve high performance on in-distribution datasets but poor performance on out-of-distribution ones.
Most of the existing debiasing methods often identify and weaken these samples with biased features.
Down-weighting these samples obstructs the model in learning from the non-biased parts of these samples.
We propose to eliminate spurious correlations in a fine-grained manner from a feature space perspective.
arXiv Detail & Related papers (2022-02-16T13:23:14Z) - Local Intrinsic Dimensionality Signals Adversarial Perturbations [28.328973408891834]
Local dimensionality (LID) is a local metric that describes the minimum number of latent variables required to describe each data point.
In this paper, we derive a lower-bound and an upper-bound for the LID value of a perturbed data point and demonstrate that the bounds, in particular the lower-bound, has a positive correlation with the magnitude of the perturbation.
arXiv Detail & Related papers (2021-09-24T08:29:50Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
We propose methods to facilitate identification of training data artifacts.
We show that this proposed training-feature attribution approach can be used to uncover artifacts in training data.
We execute a small user study to evaluate whether these methods are useful to NLP researchers in practice.
arXiv Detail & Related papers (2021-07-01T09:26:13Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.