Knowledge Transfer from LLMs to Provenance Analysis: A Semantic-Augmented Method for APT Detection
- URL: http://arxiv.org/abs/2503.18316v2
- Date: Tue, 25 Mar 2025 20:11:36 GMT
- Title: Knowledge Transfer from LLMs to Provenance Analysis: A Semantic-Augmented Method for APT Detection
- Authors: Fei Zuo, Junghwan Rhee, Yung Ryn Choe,
- Abstract summary: We propose a new strategy for taking advantage of Large Language Models (LLMs) in provenance-based threat detection.<n>LLMs offer additional details in provenance data interpretation, leveraging their knowledge of system calls, software identity, and high-level understanding of application execution context.<n>In our evaluation, supervised threat detection achieves a precision of 99.0%, and semi-supervised anomaly detection attains a precision of 96.9%.
- Score: 1.2571354974258824
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Advanced Persistent Threats (APTs) have caused significant losses across a wide range of sectors, including the theft of sensitive data and harm to system integrity. As attack techniques grow increasingly sophisticated and stealthy, the arms race between cyber defenders and attackers continues to intensify. The revolutionary impact of Large Language Models (LLMs) has opened up numerous opportunities in various fields, including cybersecurity. An intriguing question arises: can the extensive knowledge embedded in LLMs be harnessed for provenance analysis and play a positive role in identifying previously unknown malicious events? To seek a deeper understanding of this issue, we propose a new strategy for taking advantage of LLMs in provenance-based threat detection. In our design, the state-of-the-art LLM offers additional details in provenance data interpretation, leveraging their knowledge of system calls, software identity, and high-level understanding of application execution context. The advanced contextualized embedding capability is further utilized to capture the rich semantics of event descriptions. We comprehensively examine the quality of the resulting embeddings, and it turns out that they offer promising avenues. Subsequently, machine learning models built upon these embeddings demonstrated outstanding performance on real-world data. In our evaluation, supervised threat detection achieves a precision of 99.0%, and semi-supervised anomaly detection attains a precision of 96.9%.
Related papers
- Large Language Models powered Network Attack Detection: Architecture, Opportunities and Case Study [26.966976709473226]
Large Language Models (LLMs) are trained on a vast corpus of text.
This has opened up a new door for network threat detection.
We present our design on LLM-powered DDoS detection as a case study.
arXiv Detail & Related papers (2025-03-24T09:40:46Z) - Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
Large Language Models (LLMs) have revolutionized various domains but remain vulnerable to prompt injection attacks.
We introduce the concept of the distraction effect, where specific attention heads shift focus from the original instruction to the injected instruction.
We propose Attention Tracker, a training-free detection method that tracks attention patterns on instruction to detect prompt injection attacks.
arXiv Detail & Related papers (2024-11-01T04:05:59Z) - Detecting and Understanding Vulnerabilities in Language Models via Mechanistic Interpretability [44.99833362998488]
Large Language Models (LLMs) have shown impressive performance across a wide range of tasks.
LLMs in particular are known to be vulnerable to adversarial attacks, where an imperceptible change to the input can mislead the output of the model.
We propose a method, based on Mechanistic Interpretability (MI) techniques, to guide this process.
arXiv Detail & Related papers (2024-07-29T09:55:34Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities across a wide range of multimodal understanding and reasoning tasks.
The vulnerability of LVLMs is relatively underexplored, posing potential security risks in daily usage.
In this paper, we provide a comprehensive review of the various forms of existing LVLM attacks.
arXiv Detail & Related papers (2024-07-10T06:57:58Z) - Towards Explainable Vulnerability Detection with Large Language Models [17.96542494363619]
Software vulnerabilities pose significant risks to the security and integrity of software systems.<n>The advent of large language models (LLMs) has introduced transformative potential due to their advanced generative capabilities.<n>In this paper, we propose LLMVulExp, an automated framework designed to specialize LLMs for the dual tasks of vulnerability detection and explanation.
arXiv Detail & Related papers (2024-06-14T04:01:25Z) - Generative AI in Cybersecurity: A Comprehensive Review of LLM Applications and Vulnerabilities [1.0974825157329373]
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs)<n>We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection.<n>We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA.
arXiv Detail & Related papers (2024-05-21T13:02:27Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
We conduct a comprehensive review of the literature on the application of Large Language Models in cybersecurity (LLM4Security)
We observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection.
Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training.
arXiv Detail & Related papers (2024-05-08T02:09:17Z) - What Does the Bot Say? Opportunities and Risks of Large Language Models in Social Media Bot Detection [48.572932773403274]
We investigate the opportunities and risks of large language models in social bot detection.
We propose a mixture-of-heterogeneous-experts framework to divide and conquer diverse user information modalities.
Experiments show that instruction tuning on 1,000 annotated examples produces specialized LLMs that outperform state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-01T06:21:19Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
The ability to detect LLMs-generated content has become of paramount importance.
We aim to provide a detailed overview of existing detection strategies and benchmarks.
We also posit the necessity for a multi-faceted approach to defend against various attacks.
arXiv Detail & Related papers (2023-10-24T09:10:26Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.